浏览全部资源
扫码关注微信
1.海军航空工程学院 控制工程系, 山东 烟台 264001
2.海军航空兵学院 空中领航系, 辽宁 葫芦岛 125000
吴修振(1988-), 男, 山东莱芜人, 博士研究生, 2012年于海军航空工程学院获得硕士学位, 主要从事导航、制导与控制方面研究。E-mail:wxz_lucky@163.com
[ "刘刚(1985-), 男, 云南昆明人, 博士, 讲师, 2015年于清华大学获得博士学位, 主要研究方向为导航、制导与控制。E-mail:348651165@qq.com" ]
收稿日期:2016-12-23,
录用日期:2017-3-30,
纸质出版日期:2017-08-25
移动端阅览
吴修振, 刘刚, 于凤全, 等. 基于单目视觉的GPS辅助相机外参数标定[J]. 光学 精密工程, 2017,25(8):2252-2258.
Xiu-zhen WU, Gang LIU, Feng-quan YU, et al. Calibration of camera extrinsic parameters based on monocular visual with GPS assistant[J]. Optics and precision engineering, 2017, 25(8): 2252-2258.
吴修振, 刘刚, 于凤全, 等. 基于单目视觉的GPS辅助相机外参数标定[J]. 光学 精密工程, 2017,25(8):2252-2258. DOI: 10.3788/OPE.20172508.2252.
Xiu-zhen WU, Gang LIU, Feng-quan YU, et al. Calibration of camera extrinsic parameters based on monocular visual with GPS assistant[J]. Optics and precision engineering, 2017, 25(8): 2252-2258. DOI: 10.3788/OPE.20172508.2252.
针对机器人视觉系统外参数标定的问题,提出了基于单目视觉ORB-SLAM的差分GPS辅助相机外参数标定方法。分析了单目视觉ORB-SLAM和GPS(Global Position System)定位数据之间的相似关系,建立了相机外参数标定的非线性最小二乘模型。基于随机采样一致性(RANSAC),通过三点法求得模型的初始解。设计了Levenberg-Marquardt(LM)迭代算法求解出最优解,从而得到了最优的相机相对位置和姿态参数。最后,对提出的方法进行仿真和跑车试验验证。结果表明:在试验半径为50 m时,所设计标定方法的姿态标定精度可达0.1°,位置标定精度可达0.2%。该方法标定过程简单实用,不需要外界环境的先验信息和人工干预,具有很高的精度和显著的应用价值。
An extrinsic parameter calibration method with differential GPS(Global Position System) assistant based on monocular visual ORB-SLAM(ORB-Simullaneous Location and Mapping) was proposed aimed at extrinsic parameter calibration problem of a robot vision system. Nonlinear least square models of extrinsic parameter calibration were established based on analyzing the similarity relationship between monocular visual ORB-SLAM and GPS positioning data. The initial solution of model was obtained by three-point method based on Random Sample Consensus (RANSAC)
and then an optimal solution was obtained by designing Levenberg-Marquardt (LM) iterative algorithm. Thus optimal relative position and pose parameters of a camera were obtained. Simulation and traffic-running experimental verification was performed for proposed methods. The result indicates that when experimental radius was 50 m
the pose calibration precision of designed calibration method could reach 0.1° and position calibration precision could reach 0.2%. It concludes that the calibration process of the method is simple and practical. It does not need prior information of external environment and manual intervention
and has high precision and a significant application value.
KLAPPSTEIN J, STEIN F, FRANKE U. Applying kalman filtering to road homography estimation[C]. Workshop on Planning, Perception and Navigation for Intelligent Vehicles in Conjunction with IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2007. https://www.mendeley.com/research-papers/applying-kalman-filtering-road-homography-estimation/
CARRERA G, ANGELI A, DAVISON A J. SLAM-based automatic extrinsic calibration of a multi-camera rig[C]. Proceedings of 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011:2652-2659. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5980294
GUO C X, MIRZAEI F M, ROUMELIOTIS S I. An analytical least-squares solution to the odometer-camera extrinsic calibration problem[C]. Proceedings of 2012 IEEE International Conference on Robotics and Automation, IEEE, 2012:3962-3968. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6225339
KELLY J, SUKHATME G S. Visual-inertial sensor fusion:localization, mapping and sensor-to-sensor self-calibration[J]. International Journal of Robotics Research, 2011, 30(1):56-79.
WANG D, PAN Q, ZHAO C, et al.. SLAM-based cooperative calibration for optical sensors array with GPS/IMU aided[C]. Proceedings of 2016 International Conference on Unmanned Aircraft Systems, IEEE, 2016:615-623. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502643
MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
MUR-ARTAL R, TARDOS J D. Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM[C]. Proceedings of 2015 Robotics:Science and Systems (RSS), RSS, 2015. https://www.semanticscholar.org/paper/Probabilistic-Semi-Dense-Mapping-from-Highly-Accur-Mur-Artal-Tard%C3%B3s/33691b7e8c980ea2dea5b5d3d7bee661e9623715
MUR-ARTAL R, TARDOS J D. Fast relocalisation and loop closing in keyframe-based SLAM[C]. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2014:846-853. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6906953
熊斯睿. 基于立体全景视觉的移动机器人3D SLAM研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. http: //cdmd. cnki. com. cn/Article/CDMD-10213-1015980793. htm
XIONG S R. Research on 3D SLAM of mobile robot with omnidirectional stereo vision[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
FAESSLER M, FONTANA F, FORSTER C, et al.. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle[J]. Journal of Field Robotics, 2016, 33(4):431-450.
FUENTES-PACHECO J, RUIZ-ASCENCIO J, REND? N-MANCHA J M. Visual simultaneous localization and mapping:a survey[J]. Artificial Intelligence Review, 2015, 43(1):55-81.
梁潇. 基于激光与单目视觉融合的机器人室内定位与制图研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. http: //cdmd. cnki. com. cn/Article/CDMD-10213-1016702305. htm
LIANG X. Indoor SLAM for robots based on laser and mono-vision fusion[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2):164-168.
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441.
0
浏览量
610
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构