浏览全部资源
扫码关注微信
1.电子科技大学 机械电子工程学院, 四川 成都 611731
2.中国工程物理研究院 机械制造工艺研究所, 四川 绵阳 621999
[ "王伟(1980-), 男, 江苏睢方人, 副教授, 博士生导师, 2002年于武汉大学获得学士学位, 2007年、2010年于哈尔滨工业大学分别获得硕士、博士学位, 主要从事静压支承优化设计、五轴数控机床精度检测技术、基于物联网的数控机床组网等方面的研究.E-mail:wangwhit@163.com" ]
[ "崔海龙(1989-),男,四川攀枝花人,博士研究生,2010年、2013年与电子科技大学分别获得学士、硕士学位,主要从事基于数值模拟的静压之承优化设计方面的研究。E-mail:cuihailong61@foxmail.com" ]
收稿日期:2017-03-15,
录用日期:2017-5-17,
纸质出版日期:2017-09
移动端阅览
王伟, 张敏, 占国清, 等. 面向空气静压支承的多孔材料渗透特性研究[J]. 光学 精密工程, 2017,25(9):2359-2366.
Wei WANG, Min ZHANG, Guo-qing ZHAN, et al. Study on permeability characteristics of porous materials for aerostatic support[J]. Optics and precision engineering, 2017, 25(9): 2359-2366.
王伟, 张敏, 占国清, 等. 面向空气静压支承的多孔材料渗透特性研究[J]. 光学 精密工程, 2017,25(9):2359-2366. DOI: 10.3788/OPE.20172509.2359.
Wei WANG, Min ZHANG, Guo-qing ZHAN, et al. Study on permeability characteristics of porous materials for aerostatic support[J]. Optics and precision engineering, 2017, 25(9): 2359-2366. DOI: 10.3788/OPE.20172509.2359.
为提高多孔质材料渗透系数的理论计算精度,本文基于分形理论建立了渗透系数求解模型,并基于图像处理优化了分形维数的求解方法。首先,利用扫描电子显微镜拍取4种多孔材料表面图像后,使用盒维法求解分形维数并研究多孔材料图像大小和放大倍数对分形维数求解准确性的影响。其次,基于气体Darcy定律、分形理论及修正的Hagen-Poiseulle气体方程建立了无修正系数的渗透系数求解方程,从而完善了多孔材料分形理论计算公式。最后搭建渗透系数测量平台,基于流动状态的判定结果,验证了理论推导的正确性。结果表明:图像越大、放大倍数越低,分形维数越趋近于真实值;通过建立材料的最大孔径、最小孔径、迂曲度及分形维数与渗透系数间的无经验参数的理论关系,可使渗透系数理论计算值更加准确。通过对比渗透系数理论计算值及实验值可知,误差值为5%~8%,满足材料渗透系数测量的误差要求。本文研究为材料渗透系数的准确获取提供了新的途径。
To improve the theoretical calculation precision of permeability coefficient for porous material
solving model of permeability coefficient was established on the basis of fractal theory
and solving method of fractal dimension was optimized by image processing. Firstly
after photographing surface image of four kinds of porous materials with a scanning electron microscope
fractal dimension was solved by box dimension method and influence of image size and amplification factor of porous material on solving precision of fractal dimension was researched. Secondly
according to Darcy law
fractal theory and corrected Hagen-Poiseulle gas equation
solving equation of permeability coefficient without correction factor was established
resulting in calculation formula of fractal theory for porous material was improved. Finally measuring platform of permeability coefficient was established
and correctness of theoretical derivation was verified on the basis of judgment result of flow state. The result indicates: with increase of image size and decrease of amplification factor
fractal dimension approaches true value increasingly; theoretical calculation value of permeability coefficient is more accurate after theoretical relation without experience parameters of maximum diameter of hole
minimum diameter of hole
tortuosity
fractal dimension and permeability coefficient is established. Error value is 5%~8% through comparing theoretical calculation value of permeability coefficient and experiment value
which can satisfy error requirement of measuring for material permeability coefficient.This paper provides new ways of obtaining material permeability coefficient accurately.
LUONG T S, POTZE W, POST J B. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors [J].Tribology International, 2004, 37(10):825-832.
张飞虎, 付鹏强, 汪圣飞, 等.超精密机床径推一体式空气静压轴承的静态特性[J].光学精密工程, 2012, 20(3):607-615.
ZHANG F H, FU P Q, WANG SH F, et al..Static characteristics of radial-thrust aerostatic bearing on ultra-precision machine tool [J].Opt. Precision Eng., 2012, 20(3):607-615.(in Chinese)
KWAN Y B P, CORBETT J. Porous aerostatic bearings-an updated review [J].Wear, 1998, 222(2):69-73.
王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社, 1999.
WANG Y F.Gas Lubricated Theory and Design Manual of Gas Bearing [M].Beijing:China Machine Press, 1999.(in Chinese)
STOUT K J, BARRANS S M. The design of aerostatic bearings for application to nanometre resolution manufacturing machine systems [J].Tribology International, 2000, 33(12):803-809.
张雯, 尹健龙, 张玉冰, 等.多微通道式气体静压节流器承载力研究[J].机械工程学报, 2012, 48(20):135-141.
ZHANG W, YIN J L, ZHANG Y B, et al..Research on bearing capacity of aerostatic restrictor with microchannels [J].Chinese Journal of Mechanical Engineering, 2012, 48(20):135-141.(in Chinese)
陈琦, 陈斌, 蔡黎明.均压槽对空气静压轴承微振动的影响[J].光学精密工程, 2014, 22(12):3354-3359.
CHEN Q, CHEN B, CAI L M.Effect of equalizing groove on small vibration of aerostatic bearings [J].Opt. Precision Eng., 2014, 22(12):3354-3359.(in Chinese)
JOSEPH J, GUNOA N S K, MITRA S K. On-chip porous media:Porosity and permeability measurements [J]. Chemical Engineering Science, 2013, 99:274-283.
LIANG H, SONG Y, CHEN Y.The measurement of permeability of porous media with methane hydrate [J].Petroleum Science and Technology, 2011, 29(1):79-87.
GUIBERT R, HORGUE P, DEBENEST G. A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry [J].Mathematical Geosciences, 2016, 48:329-347.
崔海龙, 王宝瑞, 吴定柱.基于材料特性的多孔质空气静压轴承数值模拟与实验[J].光学精密工程, 2015, 23(10):320-327.
CUI H L, WANG B R, WU D ZH. Experiment and simulation on porous aerostatic bearing based on material properties [J].Opt. Precision Eng., 2015, 23(10):320-327.(in Chinese)
POLYAKOV V V, KUCHERYAVSKⅡ S V. The fractal analysis of a porous material structure[J].Technical Physics Letters, 2001, 27(7):592-593.
YUN M J, YU B M, LU J D, et al..Fractal analysis of Herschel-Bulkley fluid flow in porous media[J]. International Journal of Heat and Mass Transfer, 2010, 53(17-18):3570-3574.
NING J F, ZHAO G P. A fractal study of sound propagation characteristics in roughened porous materials[J]. Wave Motion, 2017, 68:190-202.
于雪梅, 卢泽生, 饶河清.基于分形理论多孔质石墨渗透率的研究[J].机械工程学报, 2006, 42(增):74-77.
YU X M, LU Z SH, RAO H Q. Research on permeability of porous graphite based on fractal theory [J].Chinese Journal of Mechanical Engineering, 2006, 42(Supp.):74-77.(in Chinese)
吴初涵. 多孔质气浮轴承的理论实验研究[D]. 天津: 天津大学, 2012.
WU CH H. The theoretical and experimental research of porous air bearings [D].Tianjin:Tianjin University, 2012.(in Chinese)
冯志刚, 周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报(自然科学版), 2001, 22(6):92-95.
FENG ZH G, ZHOU H W. Computing method of fractal dimension of image and its application [J].Journal of Jiangsu University of Science and Technology(Natural Science), 2001, 22(6):92-95.(in Chinese)
彭瑞东, 谢和平, 鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报, 2004, 33(1):19-24.
PENG R D, XIE H P, JU Y. Computation method of fractal dimension for 2-D digital image [J]. Journal of China University of Mining & Technology, 2004, 33(1):19-24.(in Chinese)
0
浏览量
479
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构