浏览全部资源
扫码关注微信
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室, 浙江 杭州 310014
[ "鲁聪达(1964-), 男, 浙江慈溪人, 博士, 教授, 博士生导师, 1989年于北京农业工程大学获得硕士学位, 2007年于浙江工业大学获得博士学位, 现为浙江工业大学机械工程学院博士后办公室、工程硕士办公室主任, 主要从事模具设计与制造关键技术、燃料电池制造关键技术、机械工程管理等方面的研究.E-mail:lcd@zjut.edu.cn" ]
[ "薛浩(1991-), 男, 安徽宿州人, 硕士研究生, 2014年于皖西学院获得学士学位, 主要从事微混合器及微反应器件应用研究.E-mail:xuehao_yan@163.com" ]
收稿日期:2017-03-15,
录用日期:2017-6-22,
纸质出版日期:2017-09
移动端阅览
鲁聪达, 薛浩, 吴化平, 等. 3D-不对称菱形被动式微混合器混合特性[J]. 光学精密工程, 2017,25(9):2377-2386.
Cong-da LU, Hao XUE, Hua-ping WU, et al. Mixing characteristics of passive-type micro-mixer with 3D-asymmetrical rhombus[J]. Optics and precision engineering, 2017, 25(9): 2377-2386.
鲁聪达, 薛浩, 吴化平, 等. 3D-不对称菱形被动式微混合器混合特性[J]. 光学精密工程, 2017,25(9):2377-2386. DOI: 10.3788/OPE.20172509.2377.
Cong-da LU, Hao XUE, Hua-ping WU, et al. Mixing characteristics of passive-type micro-mixer with 3D-asymmetrical rhombus[J]. Optics and precision engineering, 2017, 25(9): 2377-2386. DOI: 10.3788/OPE.20172509.2377.
提高微混合器雷诺数的适用范围和混合强度是微混合器设计的发展趋势。本文基于非对称分离重组混合原理设计、制作了一种3D-不对称菱形被动式微混合器,并借助数值分析方法和可视化实验对混合强度和混合状态的变化进行了研究。研究发现:在低
Re
(0.01~10)范围内,两组分间的混合以扩散混合为主,随着
Re
的增加,流速对混合强度的影响有一定下降;在较高
Re
(10~200)范围内,受流速增加的影响,流体间不平衡微流惯性碰撞逐渐成为影响混合的主要因素。此时,混合强度随流速的增加逐渐增强并趋于平稳。对
Re
在0.01~200内的微混合器展开研究,分析了宽缝比
W
s
/
S
、分合角
θ
、宽厚比
H/S
等结构尺寸对混合强度的影响。通过综合考虑流体混合强度和通道压降的变化情况,确定最佳通道结构尺寸为
W
s
/
S
=0.2、
θ
=45°、
H/S
=0.5,此时微混合器的混合强度可维持在78%以上。与传统平面对称分合式混合器相比,设计制作的3D-不对称菱形被动式微混合器混合强度有较大的提高,验证了本文设计结构的有效性。
Increasing applicable scope of Reynolds number and mixing strength is development trend of micro-mixer design. A passive-type micro-mixer of 3D-asymmetrical rhombus was designed and manufactured on the basis of asymmetrical separation and reconstruction mixing principle
and change of mixing strength and mixing state were studied by means of numerical analysis and visualized experiment. Results indicate that in scope of low
Re
(0.01~10)
the mixing between two components is dominated by diffusion mixing
with increase of
Re
the influence of flow speed on mixing strength decreases to a certain degree; in higher scope of
Re
(10~200)
influenced by increase of flow speed
the inter-fluid imbalance inertia collision becomes the main factor affecting mixing
and mixture strength gradually increases and tends to be stable with increase of flow speed. Take the micro-mixer with
Re
scope of (0.01~200) as research object
influence of structural sizes such as width slit ratio
W
/
s
S
divided-compound angle
θ
width-to-thickness ratio
H/S
etc on mixing strength was analyzed. By taking into consideration of fluid mixing strength and change of passage pressure drop comprehensively
the optimum structural size of passage was designed as
W
s
/
S
=0.2
θ
=45°
H/S
=0.5
and mixing strength of micro-mixer can maintain above 78%. Compared with traditional planar symmetrical separation-and-reconstruction mixer
mixing strength of designed passive-type micro-mixer of 3D-asymmetrical rhombus is greatly increased
which verifies the effectiveness of the structure.
顾雯雯.微流控细胞芯片LED诱导透射式荧光检测微系统[J].光学精密工程, 2014, 22(8):2159-2165.
GU W W. LED induced transmitted fluorescence detector integrated in microfluidic cell chip [J].Opt. Precision Eng., 2014, 22(8):2159-2165.(in Chinese)
廖锡昌, 郑慧斐, 袁敏, 等.发光二极管诱导荧光微芯片分析检测器的研制[J].光学精密工程, 2009, 17(12):2906-2911.
LIAO X CH, ZHENG H F, YUAN M, et al.. High-power light-emitting-diode induced fluorescence detector for microfluidic chip analysis [J]. Opt. Precision Eng., 2009, 17(12):2906-2911.(in Chinese)
JEONG G S, CHUNG S, KIM C B, et al.. Applications of micromixing technology [J]. Analyst, 2010, 135(3):460-473.
HENRY OYF, O'SULLIVAN CK. Rapid DNA hybridization in microfluidics [J].TRAC Trends in Analytical Chemistry, 2012, 33:9-22.
LI Y, ZHANG D L, FENG X J, et al.. A microsecond microfluidic mixer for characterizing fast biochemical reactions [J]. Talanta, 2012, 88:175-180.
何秀华, 颜杰, 王岩.内置周期挡板的T-型微混合器[J].光学精密工程, 2015, 23(10):2877-2886.
HE X H, YAN J, WANG Y. T-shaped micromixer with periodic baffles [J].Opt. Precision Eng., 2015, 23(10):2877-2886.(in Chinese)
HSIAO K Y, WU C Y, HUANG Y T. Fluid mixing in a microchannel with longitudinal vortex generators [J].Chemical Engineering Journal, 2014, 235:27-36.
赵天, 杨志刚, 刘建芳, 等.利用压电微泵驱动和脉动混合可控合成金纳米粒子[J].光学精密工程, 2014, 22(4):904-910.
ZHAO T, YANG ZH G, LIU J F, et al.. Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing [J]. Opt. Precision Eng., 2014, 22(4):904-910.(in Chinese)
FU L M, FANG W C, HOU H H, et al.. Rapid vortex microfluidic mixer utilizing double-heart chamber [J].Chemical Engineering Journal, 2014, 249:246-251.
OZCELIK A, AHMED D, XIE Y, et al.. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls [J].Anal Chem, 2014, 86(10):5083-5088.
付强, 鲁聪达.典型被动微混合器对雷诺数变化的敏感度研究[J].化学工程, 2016, 44(6):18-21.
FU Q, LU C D. Influence of typical passive micromixer on sensitivity of changing Re [J]. Chem Eng., 2016, 44(6):18-21.(in Chinese)
HOSSAIN S, KIM K Y. Mixing performance of a serpentine micromixer with non-aligned inputs [J].Micromachines, 2015, 6(7):842-854.
VIKTOROV V, MAHMUD M R, VISCONTE C. Numerical study of fluid mixing at different inlet flow-rate ratios in Tear-drop and Chain micromixers compared to a new H-C passive micromixer [J].Engineering Applications of Computational Fluid Mechanics, 2016, 10(1):182-192.
张平, 胡亮红, 刘永顺.主辅通道型微混合器的设计与制作[J].光学精密工程, 2010, 18(4):872-879.
ZHANG P, HU L H, LIU Y SH. Design and fabrication of micromixer with main-assist channels [J].Opt. Precision Eng., 2010, 18(4):872-879.(in Chinese)
BESSOTH F G, DEMELLO A J, MANZ A. Microstructure for efficient continuous flow mixing [J].Analytical Communications, 1999, 36(6):213-215.
CHUNG C K, SHIH T R. Effect of geometry on fluid mixing of the rhombic micromixers [J].Microfluidics and Nanofluidics, 2008, 4(5):419-425.
AFZAL A, KIM K Y. Passive split and recombination micromixer with convergent-divergent walls [J].Chemical Engineering Journal, 2012, 203:182-192.
CHUNG C K, CHANG C K, LAI C C. Simulation and fabrication of a branch-channel rhombic micromixer for low pressure drop and short mixing length [J].Microsystem Technologies, 2013, 20(10-11):1981-1986.
LI J, XIA G, LI Y. Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels [J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9):1757-1765.
SHEU T S, CHEN S J, CHEN J J. Mixing of a split and recombine micromixer with tapered curved microchannels [J].Chemical Engineering Science, 2012, 71:321-332.
CORTES-QUIROZ CA, AZARBADEGAN A, ZANGENEH M. Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer [J].Sensors and Actuators B:Chemical, 2014, 202:1209-1219.
LIU K, YANG Q, CHEN F, et al.. Design and analysis of the cross-linked dual helical micromixer for rapid mixing at low Reynolds numbers [J]. Microfluidics and Nanofluidics, 2015, 19(1):169-180.
VIKTOROV V, NIMAFAR M. A novel generation of 3D SAR-based passive micromixer:efficient mixing and low pressure drop at a low Reynolds number [J].Journal of Micromechanics and Microengineering, 2013, 23(5):055023.
SADABADI H, PACKIRISAMY M, WUTHRICH R. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing [J].Journal of Micromechanics and Microengineering, 2015, 25(9):094006.
FRANZINI J B, FINNEMORE E J. Fluid mechanics with engineering applications [J]. 2003(1):192-198.
RITTER P, OSORIO-NESME A, DELGADO A. 3D numerical simulations of passive mixing in a microchannel with nozzle-diffuser-like obstacles [J].International Journal of Heat and Mass Transfer, 2016, 101:1075-1085.
ALAM A, KIM K Y. Analysis of mixing in a curved microchannel with rectangular grooves [J].Chemical Engineering Journal, 2012, 181-182:708-716.
0
浏览量
351
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构