浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "刘光(1991-), 男, 江西赣州人, 博士研究生, 2014年于东北大学获得工学学士学位, 主要从事空间光学遥感器光机热集成分析与主动光学技术方面的研究.E-mail:liuguang14@mails.ucas.ac.cn" ]
[ "郭亮(1982-), 男, 黑龙江哈尔滨人, 博士, 副研究员, 硕士生导师, 2004年、2006年于哈尔滨工业大学分别获得学士、硕士学位, 2013年于中国科学院大学获得博士学位, 主要从事传热传质学研究、航空/航天光学遥感器热控制技术研究.E-mail:guoliangciomp@qq.com" ]
收稿日期:2016-08-31,
录用日期:2016-11-14,
纸质出版日期:2017-09-25
移动端阅览
刘光, 郭亮, 胡日查. 空间相机碳纤维桁架导热增强设计[J]. 光学精密工程, 2017,25(9):2405-2412.
Guang LIU, Liang GUO, Ri-cha HU. Thermal conductivity enhancement design for carbon-fiber truss of space camera[J]. Optics and precision engineering, 2017, 25(9): 2405-2412.
刘光, 郭亮, 胡日查. 空间相机碳纤维桁架导热增强设计[J]. 光学精密工程, 2017,25(9):2405-2412. DOI: 10.3788/OPE.20172509.2405.
Guang LIU, Liang GUO, Ri-cha HU. Thermal conductivity enhancement design for carbon-fiber truss of space camera[J]. Optics and precision engineering, 2017, 25(9): 2405-2412. DOI: 10.3788/OPE.20172509.2405.
由于空间相机桁架结构常用的碳纤维复合材料热导率较低,从而导致结构内部易形成较大温度梯度。本文提出通过在碳纤维复合材料表面附着铜网和粘贴铝膜,以实现某空间相机桁架结构的导热增强设计。首先,建立了碳纤维复合材料热导率模型。然后,针对碳纤维复合材料平板表面附着铜网/粘贴铝膜的结构特点,建立了平板的传热模型,并对未经处理的碳纤维复合材料平板以及在其表面分别粘贴0.05 mm和0.5 mm铝膜、附着等效直径为0.08 mm铜网4种不同状态进行了热分析。接着,通过试验测试获得了不同状态平板结构的等效热导率。试验结果表明,表面附着铜网/粘贴铝膜可以使面内等效热导率得到不同程度的改善。其中,在碳纤维复合材料平板表面粘贴0.5 mm铝膜效果最好,其可使结构的等效热导率提升至41.3 W/(m·K)。最后,根据试验所得结构等效热导率,对某空间相机碳纤维桁架进行了热设计。桁架结构热分析结果表明,单根桁架杆的轴向温差已由6.8 ℃减小为0.8 ℃,桁架结构温度均匀性得到显著改善。
As the carbon-fiber reinforced polymer (CFRP) composite material common used for truss structure of space camera has the drawback of low thermal conductivity
great temperature gradient is easily formed in the truss. The method that copper grid was adhered and aluminum film was pasted on the surface of CFRP was proposed to enhance thermal conductivity for carbon-fiber truss of a space camera. Firstly
thermal conductivity model of CFRP was established. Then heat transfer models for four kinds of plates(including bare CFRP plate
two plates respectively pasted aluminum films of 0.05 mm and 0.5 mm
and one plate adhered copper grid with equivalent diameter as 0.08 mm on the surface) were established
and corresponding thermal analysis was conducted on the four different states of plates. Then equivalent thermal conductivities of four kinds of plates were obtained through finite element software. Test result indicates: equivalent thermal conductivity could be improved in different degrees through adhering copper grid/pasting aluminum film on the surface of CFRP. Structural equivalent thermal conductivity was increased to 41.3 W/(m·K) to paste aluminum film of 0.5 mm on the plate surface of CFRP. Finally
thermal design was conducted on carbon-fiber truss of a certain space camera according to structural equivalent thermal conductivity in the test. Thermal analysis result of truss structure indicates that axial temperature difference of a single truss rod reduces from 6.8 ℃ to 0.8 ℃
and the temperature uniformity of truss structure is significantly improved.
范斌, 王艳.国外长焦距高分辨率遥感相机桁架结构研究[J].航天器返回与遥感, 2008, 29(2):35-41.
FAN B, WANG Y. Research on truss structure of foreign remote-sensing cameras with long focal length and high resolution [J].Spcacecraft Recovery & Remote Sensing, 2008, 29(2):35-41.(in Chinese)
章令晖, 李甲申, 王琦洁, 等.航天器用复合材料桁架结构研究进展[J].纤维复合材料, 2013, 30(4):62-68.
ZHANG L H, LI J SH, WANG Q J, et al.. The progress of research on composite truss for spacecraft [J].Fiber Composites, 2013, 30(4):62-68.(in Chinese)
DAVID G. Spacecraft Thermal Control Handbook-Volume Ⅰ:Fundamental Technologies [M]. (2nd edition), EI Segundo:The Aerospace Press.
GALLAGHER D, BERGSTROM J, DAY J, et al .. Overview of the optical design and performance of the high resolution science imaging experiment(HiRISE)[C]. Proc SPIE , 2005 Bellingham , WA:SPIE , 2005:198-207J. http://spie.org/Publications/Proceedings/Paper/10.1117/12.618539
BRET-DIBAT T, ALBOUYS V, BERTHON J, et al.. Tests of a high resolution three mirrors anastigmat telescope [J]. SPIE, 1999, 3870:126-137.
MANOCHA L M, WARRIER A, MANOCHA S, et al.. Thermophysical properties of densified pitch based carbon/carbon materials-I. unidirectional composites [J]. Carbon, 2006, 44:480.
孔林, 王栋, 姚劲松, 等.轻型空间相机支撑桁架的精确控温[J].光学精密工程, 2014, 22(3):712-719.
KONG L, WANG D, YAO J S, et al.. Precision temperature control for supporting trusses of lightweight space cameras [J]. Opt. Precision Eng., 2014, 22(3):712-719.(in Chinese)
吴清文, 王领华, 杨献伟, 等.炭/炭复合材料在空间光学遥感器热控制中的应用[J].光学精密工程, 2012, 20(9):1984-1990.
WU Q W, WANG L H, YANG X W, et al.. Application of carbon-carbon composites to thermal control of space optical instrument [J]. Opt. Precision Eng., 2012, 20(9):1984-1990.(in Chinese)
崔岩, 李丽富, 李景林, 等.制备空间光机结构件的高体份SiC/Al复合材料[J].光学精密工程, 2007, 15(8):1175-1180.
CUI Y, LI L F, LI J L, et al..High volume fraction SiC/Al composites for space-based optomechanical structures [J]. Opt. Precision Eng., 2007, 15(8):1175-1180.(in Chinese)
BERGMAN T L, INCROPERA F P, DEWITT D P, et al.. Fundamentals of Heat and Mass Transfer [M]. John Wiley & Sons, 2011.
PILLING M W, YATES B, BLACK M A, et al.. The thermal conductivity of carbon fibre-reinforced composites [J]. J MaterSci, 1979, 14: 1326.
李仕通, 彭超义, 刑素丽, 等.导热型碳纤维增强聚合物基复合材料的研究进展[J].材料导报A:综述篇, 2012, 26(7):79-84.
LI SH T, PENG CH Y, XING S L, et al.. Research progress on thermal conductivity of carbon fiber reinforced polymer matrix composites [J]. Materials Review, 2012, 26(7):79-84.(in Chinese)
胡芃, 陈则韶.量热技术和热物理性测定[M].合肥:中国科学技术大学出版社, 2009.
HU P, CHEN Z SH. Calorimetry and Thermal Properties Measurement [M]. Hefei:China University of Science & Technology Press, 2009.(in Chinese)
KRAEMER D, CHEN G. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy [J]. Review of Scientific Instruments, 2014, 85(2):025108.
TRITT, TERRY M. Thermal Conductivity:Theory, Properties, and Applications [M]. Springer Science & Business Media, 2005.
侯增祺, 胡金刚.航天器热控制技术原理及其应用[M].北京:中国科学技术出版社, 2007.
HOU Z Q, HU J G.Spacecraft Thermal Control-Fundamentals and Application [M]. Beijing:China Science & Technology Press, 2007.(in Chinese)
0
浏览量
906
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构