浏览全部资源
扫码关注微信
1.华南理工大学 自动化科学与工程学院, 广东 广州 510640
2.华南理工大学 精密电子制造装备教育部研究中心, 广东 广州 510640
3.广州大学 机械与电气工程学院, 广东 广州 510006
[ "高红霞(1975-), 女, 陕西富平人, 博士, 教授, 博士生导师, 1996年、2000年于西安交通大学分别获得学士、硕士学位, 2003年于中国科学院自动化研究所获得博士学位, 主要从事复杂成像条件下图像的复原和重建研究.E-mail:hxgao@scut.edu.cn" ]
[ "谢剑河(1990-), 男, 广东潮州人, 硕士, 2013年、2016年于华南理工大学分别获得学士、硕士学位, 主要从事机器视觉、图像处理方面的研究.E-mail:xiejianhe_2006@163.com" ]
收稿日期:2017-01-03,
录用日期:2017-3-13,
纸质出版日期:2017-09-25
移动端阅览
高红霞, 谢剑河, 曾润浩, 等. 数据保真项与稀疏约束项相融合的稀疏重建[J]. 光学精密工程, 2017,25(9):2437-2447.
Hong-xia GAO, Jian-he XIE, Run-hao ZENG, et al. Sparse reconstruction method based on integrating data fidelity term and sparse constraint term[J]. Optics and precision engineering, 2017, 25(9): 2437-2447.
高红霞, 谢剑河, 曾润浩, 等. 数据保真项与稀疏约束项相融合的稀疏重建[J]. 光学精密工程, 2017,25(9):2437-2447. DOI: 10.3788/OPE.20172509.2437.
Hong-xia GAO, Jian-he XIE, Run-hao ZENG, et al. Sparse reconstruction method based on integrating data fidelity term and sparse constraint term[J]. Optics and precision engineering, 2017, 25(9): 2437-2447. DOI: 10.3788/OPE.20172509.2437.
本文针对低光子计数成像过程中产生的泊松高斯混合噪声,提出了一种数据保真项与稀疏约束项相融合的稀疏重建方法。首先,基于泊松高斯噪声相互独立的混合噪声模型,建立了数据保真项与稀疏约束项相融合的稀疏重建目标函数;在图像块聚类的基础上,应用改进贪婪算法实现类内稀疏分解和字典更新;最后,稀疏分解和字典更新交替迭代求解干净图像。针对强烈泊松高斯噪声污染图像的重建实验显示,本文方法与对比方法相比,重建结果的PSNR值平均提升了5.5%,MSSIM值也有明显提升。这些结果表明:本文方法对具有强烈泊松高斯混合噪声的图像有较好的图像复原和噪声去除效果。
Aiming at the process of low-dose photon counting imaging with Poisson-Gaussian mixed noise
a sparse reconstruction method of integrating data fidelity term and sparse constrait term is proposed. Firstly
based on the hypothesis that Poisson and Gaussian noise are mutually independent
the sparse reconstructing objective function based on integrating data fidelity term and sparsity constraint term is established. Based on patch clustering
the improved greedy algorithm is applied to implement sparse decomposition and dictionary update. Finally
a clean image is obtained by alternating iteration. Contrast experiments on images corrupted with strong Poisson-Gaussian mixed noise show that the average PSNR of image reconstructed by the proposed method increased by 5.5% more than those of the contrast methods
moreover
their MSSIM increased significantly. The experiment results demonstrate that the proposed method has better image restoration and denoising effect for low photon counting image with strong Poisson-Gaussian mixed noise.
李玉彬, 李向良, 姜燕梅.微焦点X射线CT及其在无损检测中的应用[J].无损检测, 1999, 21(12): 549-552.
LI Y B, LI X L, JIANG Y M. Micro-focus X-ray CT and its application in nondestructive testing [J]. Nondestructive Testing, 1999, 21(12): 549-552. (in Chinese)
李乐, 陈忠, 张宪民.基于微焦点X射线BGA焊点缺陷检测[J].电子设计工程, 2014, 22(12): 164-166+170.
LI L, CHEN ZH, ZHANG X M. BGA solder joint's defect detection based on precision micro-focus X-ray [J].Electronic Design Engineering, 2014, 22(12): 164-166+170. (in Chinese)
杨宏成, 高欣, 张涛.应用投影收缩的压缩感知锥束CT短扫描重建[J].光学精密工程, 2014, 22(3): 770-778.
YANG H CH, GAO X, ZHANG T. Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction [J].Opt. Precision Eng., 2014, 22(3): 770-778. (in Chinese)
WU Z, GAO H, MA G, et al.. A dual adaptive regularization method to remove mixed Gaussian-Poisson noise [C]. Proceedings of 13th Asian Conference on Computer Vision , Springer , Cham , 2016: 206-221. http://www.researchgate.net/publication/315005253_A_Dual_Adaptive_Regularization_Method_to_Remove_Mixed_Gaussian-Poisson_Noise?ev=auth_pub
高红霞, 吴丽璇, 徐寒, 等.微焦点X射线图像乘性加性混合噪声的去除[J].光学精密工程, 2014, 22(11): 3100-3113.
GAO H X, WU L X, XU H, et al.. Denoising method of micro-focus X-ray images corrupted with mixed multiplicative and additive noises [J]. Opt. Precision Eng., 2014, 22(11): 3100-3113. (in Chinese)
SPERL J, BEQUE D, CLAUS B, et al.. Computer-assisted scan protocol and reconstruction (CASPAR)—reduction of image noise and patient dose [J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 724-732.
吴强, 迟耀斌, 王智勇. CCD传感器噪声对遥感影像无损压缩的影响[J].光电工程, 2010, 37(3):72-78.
WU Q, CHI Y B, WANG ZH Y. Effect of CCD noise on lossless compression of remote sensing images [J]. Opto-Electronic Engineering, 2010, 37(3): 72-78. (in Chinese)
邓承志, 刘娟娟, 汪胜前, 等.保留结构特征的稀疏性正则化图像修复[J].光学精密工程, 2013, 21(7): 1906-1913.
DENG CH ZH, LIU J J, WANG SH Q, et al.. Feature retained image inpainting based on sparsity regularization [J]. Opt. Precision Eng., 2013, 21(7): 1906-1913. (in Chinese)
练秋生, 石保顺, 陈书贞.字典学习模型、算法及其应用研究进展[J].自动化学报, 2015, 41(2): 240-260.
LIAN Q SH, SHI B SH, CHEN SH ZH. Research advances on dictionary learning models, algorithms and applications [J]. Acta Automation Sinica, 2015, 41(2): 240-260. (in Chinese)
WEI D H, MAO J L, LIU Y. An improved complementary matching pursuit algorithm for compressed sensing signal reconstruction [C]. Proceedings of International Conference on Advanced Intelligence and Awareness Internet , 2011: 389-393. http://ieeexplore.ieee.org/document/6233258/
MICHAEL E, MICHAL A. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
CHATTERJEE P, MILANFAR P. Clustering-based denoising with locally learned dictionaries [J]. IEEE Transactions on Image Processing, 2009, 18(7): 1438-1451.
MAIRAL J, BACH F, PONCE J, et al.. Non-local sparse models for image restoration [C]. Proceedings of IEEE International Conference on Computer Vision , 2010, 30(2): 2272-2279. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5459452
DONG W, LI X, ZHANG L, et al.. Sparsity-based image denoising via dictionary learning and structural clustering [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition , IEEE Computer Society , 2011: 457-464. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5995478
HARMANYZ T, MARCIAR F, WILLETT R M. This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms-theory and practice [J]. IEEE Trans Image Process., 2012, 21(3): 1084-1096.
王旭东. 基于MAP估计, 变分PDE的图像去噪问题研究[D]. 西安: 西安电子科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10701-1013295716.htm
WANG X D. Study on image denoising models based on MAP estimation, variation and PDE [D]. Xian: Xidian University, 2013. (in Chinese)
DONOHOD L. Compress sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
蒲国林, 邱玉辉.基于稀疏表示全局字典学习的图像分类方法[J].计算机应用, 2015, 35(2):499-501.
PU G L, QIU Y H. Image classification based on global dictionary learning method with sparse representation [J].Journal of Computer Applications, 2015, 35(2):499-501. (in Chinese)
GIRYES R, ELAO M. Sparsity based Poissondenoising with dictionary learning [J]. IEEE Transactions on Image Processing, 2014, 23(12): 5057-5069.
YUAN G L, LU X W. An active set limited memory BFGS algorithm for bound constrained optimization [J].Applied Mathematical Modelling, 2011, 35(7): 3561-3573.
黄建国, 孙连山, 叶中行.黎曼流形上带Armijo步长准则优化算法[J].上海交通大学学报, 2002, 36(2): 267-271.
HUANG J G, SUN L SH, YE ZH X. Optimization algorithm with Armijo rule on Riemann manifold [J]. Journal of Shanghai Jiaotong University, 2002, 36(2): 267-271. (in Chinese)
0
浏览量
811
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构