浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所 中科院航空光学成像与测量重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "丁鹏(1992-), 男, 江苏扬州人, 中国科学院长春光学精密机械与物理研究所博士研究生, 主要从事图像处理、深度卷积神经网络, 目标检测的研究.E-mail:dingpeng14@mails.ucas.ac.cn" ]
张叶(1981-), 女, 吉林长春人.中国科学院长春光学精密机械与物理研究所副研究员.主要从事计算机视觉和机器学习等方面的研究.E-mail:y.zhang@ciomp.ac.cn
收稿日期:2017-01-18,
录用日期:2017-3-20,
纸质出版日期:2017-09-25
移动端阅览
丁鹏, 张叶, 常旭岭. 基于多尺度多特征视觉显著性的海面舰船检测[J]. 光学精密工程, 2017,25(9):2461-2468.
Peng DING, Ye ZHANG, Xu-ling CHANG. Ship detection on sea surface based on multi-feature and multi-scale visual attention[J]. Optics and precision engineering, 2017, 25(9): 2461-2468.
丁鹏, 张叶, 常旭岭. 基于多尺度多特征视觉显著性的海面舰船检测[J]. 光学精密工程, 2017,25(9):2461-2468. DOI: 10.3788/OPE.20172509.2461.
Peng DING, Ye ZHANG, Xu-ling CHANG. Ship detection on sea surface based on multi-feature and multi-scale visual attention[J]. Optics and precision engineering, 2017, 25(9): 2461-2468. DOI: 10.3788/OPE.20172509.2461.
为了精确地检测到舰船目标,提出了一种基于多特征、多尺度视觉显著性的海面舰船目标检测方法。该方法首先利用多尺度自适应的顶帽算法抑制云层、油污的干扰,然后提取双颜色空间特征以及边缘特征构成双四元数图像进行舰船显著性检测。由于充分利用了双四元数图像,故可对多个特征尺度进行处理,并保证不同尺度特征之间关联性。该方法还利用人眼对不同用大小的图像关注目标不同的特点对图像进行上下采样以避免漏检和检测重叠。在得到显著图后利用自适应图像分割(OTSU)算法确定舰船所在的区域,并在原图上标定、提取舰船目标。在多种海面情况下进行了实验分析,结果表明:该算法可以排除多种干扰,精确地检测到舰船目标,真正率达97.73%,虚警率低至3.37%,相较于他频域显著性检测算法在舰船检测方面有明显的优势。
To detect ship targets accurately
a new method to detect ship targets on sea surface was proposed based on multi-feature and multi-scale visual saliency. Firstly a scale-adaptive top-hat algorithm was used to suppress the interference of clouds and oil. Then
the double-quaternion images are constructed by using double-color spatial features and edge features to detect the saliency of ships. This method makes full use of the double quaternion images
so it can be operated at the same time in a number of channels
and can save operation time to guarantee the characteristics of different scale characteristics. Furthermore
the method also uses the character that the human eye focused on the different targets for image with different sized in implement of the up-down sampling to avoid the leak overlapping in image detection. When the last saliency map is obtained
the ships were segmented to ensure the target location by using the OTSU algorithm
and then the ship target was marked and extracted in the original image. The experiments were analyzed in the several sea conditions. Experimental results show that the algorithm eliminates the interference of cloud
fog and oil pollution and ship targets are detected accurately. With this algorithm
true rate iss 97.73%
and the false alarm rate as low as 3.37%. Compared to other frequency domain saliency detection algorithms in ship detection
this algorithm has obvious advantages.
SONG Z N, SUI H G, WANG Y J. Automatic ship detection for optical satellite images based on visual attention model and LBP [C]. 2014 IEEE Workshop on Electronics, Computer and Applications , IEEE , 2014:722-725. http://ieeexplore.ieee.org/document/6845723/
BORJI A, CHENG M M, JIANG H Z, et al.. Salient object detection:a benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12):5706-5722.
CHENG M M, MITRA N J, HUANG X L, et al.. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):569-582.
KOSMIDOU V E, ADAM A, PAPADANⅡL C D, et al.. Gender effect in human brain responses to bottom-up and top-down attention using the EEG 3D-vector field tomography [C]. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( EMBC ), IEEE , 2015:7574-7577. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7320145
BUSO V, GONZALEZ-DÍAZ I, BENOIS-PINEAU J. Object recognition with top-down visual attention modeling for behavioral studies [C]. 2015 IEEE International Conference on Image Processing ( ICIP ), IEEE , 2015:4431-4435. http://ieeexplore.ieee.org/document/7351644/
REN L, SHI C J, RAN X. Salient target detection method under sea surface environment based on multi-scale phase spectrum [C]. 2011 Seventh International Conference on Natural Computation ( ICNC ), IEEE , 2011:977-981. http://ieeexplore.ieee.org/document/6022201/
YAO Z J. Small target detection under the sea using multi-scale spectral residual and maximum symmetric surround [C]. 2013 10 th International Conference on Fuzzy Systems and Knowledge Discovery ( FSKD ), IEEE , 2013:241-245. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6816200
BIAN P, ZHANG L M. Biological Plausibility of Spectral Domain Approach for Spatiotemporal Visual Saliency [M].KÖPPEN M, KASABOV N, COGHILL G. Advances in Neuro-Information Processing. Lecture Notes in Computer Science. Berlin, Heidelberg:Springer, 2009:251-258.
GUO C L, MA Q, ZHANG L M. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform [C]. IEEE Conference on Computer Vision and Pattern Recognition , IEEE , 2008:1-8. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587715
GUO C L, ZHANG L M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression [J]. IEEE Transactions on Image Processing, 2010, 19(1):185-198.
SAID S, LE BIHAN N, SANGWINE S J. Fast complexified quaternion fourier transform [J]. IEEE Transactions on Signal Processing, 2008, 56(4):1522-1531.
BAHADARKHAN K, KHALIQ A A, SHAHID M. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding [J]. PLoS One, 2016, 11(7):e0158996.
SHA C S, HOU J, CUI H X, et al.. Gray level-median histogram based 2D otsu's method [C]. 2015 International Conference on Industrial Informatics - Computing Technology , Intelligent Technology , Industrial Information Integration ( ICIICII ), IEEE , 2015:30-33. http://ieeexplore.ieee.org/document/7373783/
BAHADARKHAN K, KHALIQ A A, SHAHID M. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding [J]. PLoS One, 2016, 11(7):e0158996.
ELL T A, SANGWINE S J. Hypercomplex fourier transforms of color images [J]. IEEE Transactions on Image Processing, 2007, 16(1):22-35.
姜春雪, 郭海涛, 喻金桃, 等.假高帽变换的高分影像居民地信息提取[J].测绘科学, 2016, 41(3):104-108, 53.
JIANGC X, GUO H T, YU J T, et al.. Residential area extraction of high resolution RS imagery based on multiple contour structuring elements with pseudo top-hat transformation [J]. Science of Surveying and Mapping, 2016, 41(3):104-108, 53. (in Chinese)
0
浏览量
284
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构