浏览全部资源
扫码关注微信
复旦大学 信息科学与工程学院 专项集成线路与系统国家重点实验室, 上海 200433
[ "陈宜方(1959-), 男, 上海人, 博士, 教授, 1982年于复旦大学物理系获得学士学位, 1985年于上海技术物理研究所获得硕士学位, 1995年于英国牛津大学获得凝聚态物理博士学位, 现为复旦大学信息学院微纳系统中心纳米光刻与应用小组组长, 英国国家物理实验室(NPL)高级客座研究员(2014-2019), Scientific Report杂志编委, Microelectronics Engineering (MEE)杂志亚太主编, 主要从事纳米加工及其在纳米电子学、纳米光子学、超材料和X射线显微透镜等领域的应用。E-mail:yifangchen@fudan.edu.cn" ]
收稿日期:2017-04-28,
录用日期:2017-5-12,
纸质出版日期:2017-11-25
移动端阅览
陈宜方. X射线衍射光学部件的制备及其光学性能表征[J]. 光学 精密工程, 2017,25(11):2779-2795.
Yi-fang CHEN. Fabrication of diffractive X-ray optics and their performance characterization[J]. Optics and precision engineering, 2017, 25(11): 2779-2795.
陈宜方. X射线衍射光学部件的制备及其光学性能表征[J]. 光学 精密工程, 2017,25(11):2779-2795. DOI: 10.3788/OPE.20172511.2779.
Yi-fang CHEN. Fabrication of diffractive X-ray optics and their performance characterization[J]. Optics and precision engineering, 2017, 25(11): 2779-2795. DOI: 10.3788/OPE.20172511.2779.
综述了国内外在纳米加工X射线衍射光学透镜方面的研究现状和最新进展。介绍了作者团队过去三年在这方面做的工作。针对衍射透镜关键技术,研发了具有大高宽比形貌的电子束光刻基础工艺;结合金电镀,提出了纳米尺度波带片的制造技术,并将该工艺成功扩展于分辨率板(Siemens star)和集成光栅型会聚透镜的研制。运用蒙特卡罗模拟和显影动力学,探索了电子束光刻技术所能够实现~100 nm的波带片透镜(其中,100 nm波带片高宽比为16:1)、50~300 nm的分辨率测试板(其中,300 nm测试板高宽比为10:1)和200 nm的会聚透镜(高宽比为10:1)。对所研制的光学部件在同步辐射光源进行了实验表征。结果表明,100 nm波带片聚焦斑尺寸为234 nm,测试板和会聚透镜的光学特性与国外同样光学部件到达同等水平;会聚透镜辐照的均匀性为99%。最后,总结了近几年我国X射线衍射透镜的发展进度,指出了衍射光学部件光学性能发展的最大瓶颈是分辨率与衍射效率相互制约,提出了提高光学部件衍射效率的具体途径,给出了我国X射线衍射透镜技术的未来发展路线图。
The present status and recent advances in nanofabrication of X-ray diffractive lenses in domestic and overseas were reviewed. The research and achievements of in the past three years by author's group were introduced. For the key technology of diffractive lenses
the basic processes of electron beam lithography for large aspect ratio profiles in resists was established. By combing with Au electroplating
a solid technical background for nanoscale zone plates was successfully built up and applied to the fabrications of Siemens stars and grating based beam shapers. Furthermore
by applying Monte Carlo simulation and developing dynamics
the aspect ratio (zone height/zone width)limit by electron beam lithography was explored and the physical essence leading to the limit was discussed. A serial of diffractive lenses
such as 50-100 nm zone plates (in which the 100 nm zone plate shows its aspect ratio of 16:1)
50-300 nm Siemens stars(in which the 300 nm Siemens star has the aspect ratio of 10:1)and 200 nm grating based condensers(with the aspect ratio of 10:1)were successfully fabricated. The optical characterizations of these fabricated lenses were measured in Shanghai Light Source
It demonstrates that the focusing spot of 100 nm zone plate is 234 nm. The 300 nm Siemens stars and the condensers fabricated in this work show their optical quality at the world level. The standard deviation of the illuminated intensity is measured to be 1%. Finally
this paper summarizes the development of X-ray diffraction lenses in our country in recent years
and points out that the biggest bottleneck of the development of diffraction optics is the interaction between resolution and diffraction efficiency. It puts forward some specific ways to improve the diffraction efficiency of optics and gives a technical road-map for the lens technique in China in the next five years.
ICE G E, BUDAI J D, PANG J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 2011, 334(6060):1234-1239.
SAKDINAWAT A, ATTWOOD D. Nanoscale X-ray imaging[J]. Nature Photonics, 2010, 4(12):840-848.
KRASNOPEROVA A A, XIAO J, CERRINA F, et al.. Fabrication of hard X-ray phase zone plate by X-ray lithography[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 1993, 11(6):2588-2591.
SARKAR S S, SOLAK H H, SAIDANI M, et al.. High-resolution Fresnel zone plate fabrication by achromatic spatial frequency multiplication with extreme ultraviolet radiation[J]. Optics Letters, 2011, 36(10):1860-1862.
ZHANG Y CH, XIE CH Q. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element[J]. Optics Letters, 2015, 40(21):5015-5018.
MAYER M, KESKINBORA K, GRÉVENT C, et al.. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling. Erratum[J]. Journal of Synchrotron Radiation, 2014, 21(3):640.
KAMIJO N, SUZUKI Y, TAKANO H, et al.. Microbeam of 100 keV X ray with a sputtered-sliced Fresnel zone plate[J]. Review of Scientific Instruments, 2003, 74(12):5101-5104.
VILA-COMAMALA J, JEFIMOVS K, RAABE J, et al.. Silicon Fresnel zone plates for high heat load X-ray microscopy[J]. Microelectronic Engineering, 2008, 85(5-6):1241-1244.
KESKINBORA K, GRÉVENT C, BECHTEL M, et al.. Ion beam lithography for Fresnel zone plates in X-ray microscopy[J]. Optics Express, 2013, 21(10):11747-11756.
CHEN Y T, LO T N, CHIU C W, et al.. Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating[J]. Journal of Synchrotron Radiation, 2008, 15(2):170-175.
UHLÉN F, LINDQVIST S, NILSSON D, et al.. New diamond nanofabrication process for hard x-ray zone plates[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2011, 29(6):06FG03.
CHAO W L, KIM J, REKAWA S, et al.. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy[J]. Optics Express, 2009, 17(20):17669-17677.
REINSPACH J, UHLÉN F, HERTZ H M, et al.. Twelve nanometer half-pitch W-Cr-HSQ trilayer process for soft X-ray tungsten zone plates[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2011, 29(6):06FG02.
GLEBER S C, WOJCIK M, LIU J, et al.. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime[J]. Optics Express, 2014, 22(23):28142-28153.
MOHACSI I, KARVINEN P, VARTIAINEN I, et al.. High-efficiency zone-plate optics for multi-keV X-ray focusing[J]. Journal of Synchrotron Radiation, 2014, 21(3):497-501.
CHEN Y T, LO T N, CHIU C W, et al.. Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating[J]. Journal of Synchrotron Radiation, 2008, 15(2):170-175.
GORELICK S, VILA-COMAMALA J, GUZENKO V A, et al.. High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating[J]. Journal of Synchrotron Radiation, 2011, 18(3):442-446.
GRENCI G, POZZATO A, SOVERNIGO E, et al.. Fabrication of nickel diffractive phase elements for x-ray microscopy at 8 keV photon energy[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2012, 30(3):031205.
UHLÉN F, NILSSON D, RAHOMÄKI J, et al.. Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications[J]. Microelectronic Engineering, 2014, 116:40-43.
TENNANT D M, RAAB E L, BECKER M M, et al.. High resolution germanium zone plates and apertures for soft X-ray focalometry[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 1990, 8(6):1970-1974.
VILA-COMAMALA J, JEFIMOVS K, RAABE J, et al.. Silicon Fresnel zone plates for high heat load X-ray microscopy[J]. Microelectronic Engineering, 2008, 85(5-6):1241-1244.
VILA-COMAMALA J, GORELICK S, FÄRM E, et al.. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime[J]. Optics Express, 2011, 19(1):175-184.
肖凯, 刘颖, 付绍军.用衍射场叠加法分析四种误差下的X光波带片[J].微细加工技术, 2005(4):25-30.
XIAO K, LIU Y, FU SH J. Analysis of influence of 4 fabrication errors on X-ray zone plates by summing up diffraction fields[J]. Microfabrication Technology, 2005(4):25-30. (in Chinese)
肖凯, 刘颖, 付绍军.振幅矢量叠加法分析X射线波带片加工误差对效率的影响[J].光学 精密工程, 2005, 13(6):643-649.
XIAO K, LIU Y, FU SH J. Analysis of the influence of fabrication errors on the efficiency of X-ray zone plates by summing up the wavelets[J]. Opt. Precision Eng., 2005, 13(6):643-649. (in Chinese)
肖凯, 刘颖, 陈亮, 等.软X射线聚焦波带片相对衍射特性的实验研究[J].光学学报, 2006, 26(10):1598-1600.
XIAO K, LIU Y, CHEN L, et al.. Characterization of relative diffraction performance of soft X-ray zone plates by experiment[J]. Acta Optica Sinica, 2006, 26(10):1598-1600. (in Chinese)
范伟, 曹磊峰, 魏来, 等.准随机点阵二值化Gabor波带片聚焦特性的数值计算[J].强激光与粒子束, 2011, 23(1):121-124.
FAN W, CAO L F, WEI L, et al.. Numerical calculation of focusing properties of quasi-random-dot-array binary Gabor zone plate[J]. High Power Laser and Particle Beams, 2011, 23(1):121-124. (in Chinese)
肖凯, 刘颖, 徐向东, 等.软X射线相位型聚焦波带片的研制[J].光学学报, 2005, 25(12):1722-1723.
XIAO K, LIU Y, XU X D, et al.. Fabrication of soft X-ray phase condenser zone plates[J]. Acta Optica Sinica, 2005, 25(12):1722-1723. (in Chinese)
ZHU X L, WANG D Q, XIE CH Q, et al.. Fabrication of X-ray diffractive optical elements for ICF target diagnosis[J]. SPIE, 2007, 6722:672208.
JIA J, XIE CH Q, LIU M, et al.. A super-resolution Fresnel zone plate and photon sieve[J]. Optics and Lasers in Engineering, 2010, 48(7-8):760-765.
XIE CH Q, ZHU X L, LI H L, et al.. Feasibility study of hard-x-ray nanofocusing above 20 keV using compound photon sieves[J]. Optics Letters, 2010, 35(23):4048-4050.
陈洁, 柳龙华, 刘刚, 等. X射线成像波带片及制作(英文)[J].光学 精密工程, 2007, 15(12):1894-1899.
CHEN J, LIU L H, LIU G, et al.. X-ray imaging Fresnel zone plates and fabrication[J]. Opt. Precision Eng., 2007, 15(12):1894-1899.(in Chinese)
LIU L H, LIU G, XIONG Y, et al.. Fabrication of Fresnel zone plates with high aspect ratio by soft X-ray lithography[J]. Microsystem Technologies, 2008, 14(9-11):1251-1255.
LIU L H, LIU G, XIONG Y, et al.. Fabrication of X-ray imaging zone plates by e-beam and X-ray lithography[J]. Microsystem Technologies, 2010, 16(8-9):1315-1321.
王德强, 康晓辉, 谢常青, 等.电子束制作高分辨率波带片图形数据研究[J].微细加工技术, 2005(2):28-33.
WANG D Q, KANG X H, XIE CH Q, et al.. Study on image datum for high resolution zone plates fabricated by e-beam[J]. Microfabrication Technology, 2005(2):28-33. (in Chinese)
吴璇, 陈军宁, 朱效立, 等.高高宽比硬X射线聚焦波带片的制作[J].微细加工技术, 2008(6):9-11.
WU X, CHEN J N, ZHU X L, et al.. Fabrication of high-aspect-ratio hard X-ray focusing zone plates[J]. Microfabrication Technology, 2008(6):9-11. (in Chinese)
马杰, 曹磊峰, 谢常青, 等.带支撑结构的大高宽比硬X射线波带片制作[J].光电工程, 2009, 36(10):30-34.
MA J, CAO L F, XIE CH Q, et al.. Fabrication of high aspect-ratio hard X-ray zone plates with supporting structures[J]. Opto-Electronic Engineering, 2009, 36(10):30-34. (in Chinese)
LIU J P, SHAO J H, ZHANG S CH, et al.. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-X-ray optics[J]. Applied Optics, 2015, 54(32):9630-9636.
LIU J P, LI X, CHEN S H, et al.. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays[J]. Journal of Synchrotron Radiation, 2017, 24(3):595-599, 10.1107/S1600577517002247.
刘建朋. 基于电子束光刻的高高宽比金属纳米结构的工艺与应用研究[D]. 上海: 复旦大学, 2016.
LIU J P. Nanofabrication and applications research of high aspect ratio metal nanostructures based on electron-beam lithography [D]. Shanghai:Fudan University, 2006. (in Chinese)
LIU J P, ZHANG S CH, MA Y Q, et al.. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating[J]. Applied Optics, 2015, 54(9):2537-2542.
SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1):41-48.
ONO A, KATO J I, KAWATA S. Subwavelength optical imaging through a metallic nanorod array[J]. Physical Review Letters, 2005, 95(26):267407.
CHEN J B, WANG Y, JIA B H, et al.. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4):239-245.
REED E J. Physical optics:backwards doppler shifts[J]. Nature Photonics, 2011, 5(4):199-200.
CHEN Y F. Nanofabrication by electron beam lithography and its applications:a review[J]. Microelectronic Engineering, 2015, 135:57-72.
ANDERSON E H, OLYNICK D L, HARTENECK B, et al.. Nanofabrication and diffractive optics for high-resolution x-ray applications[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2000, 18(6):2970-2975.
YIN G C, SONG Y F, TANG M T, et al.. 30 nm resolution X-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope[J]. Applied Physics Letters, 2006, 89(22):221122.
RAU C, C V, PETERSON K M, JEMIAN P R, et al.. Nanofabrication and characterization of a grating based condenser for uniform illumination in hard X-ray[C]. Proceedings of the 8 th International Conference on X - ray Microscopy , IPAP Conference Series , 2005, 7:7-8. http://onlinelibrary.wiley.com/doi/10.1107/S1600577517002247/abstract
NIEMANN B, GUTTMANN P, REHBEIN S, et al.. Concept and realization of the novel rotating condenser-monochromator at the Göttingen TXM at Bessy Ⅱ[J]. Journal de Physique Ⅳ, 2003, 104(2):273-276.
JEFIMOVS K, VILA-COMAMALA J, STAMPANONI M, et al.. Beam-shaping condenser lenses for full-field transmission X-ray microscopy[J]. Journal of Synchrotron Radiation, 2008, 15(1):106-108.
SUZUKI Y, TAKEUCHI A, UESUGI K, et al.. Hollow-cone illumination for hard X-ray imaging microscopy by rotating-grating condenser optics[J]. AIP Conference Proceedings, 2011, 1365(1):160-163.
DAVID C, GORELICK S, RUTISHAUSER S, et al.. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates[J]. Scientific Reports, 2011, 1:57.
LINDBLOM M, REINSPACH J, VON HOFSTEN O, et al.. High-aspect-ratio germanium zone plates fabricated by reactive ion etching in chlorine[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2009, 27(2):L1-L3.
LINDBLOM M, HERTZ H M, HOLMBERG A. SU-8 plating mold for high-aspect-ratio nickel zone plates[J]. Microelectronic Engineering, 2007, 84(5-8):1136-1139.
SCHNEIDER G, SCHLIEBE T, ASCHOFF H. Cross-linked polymers for nanofabrication of high-resolution zone plates in nickel and germanium[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 1995, 13(6):2809-2812.
UHLÉN F, LINDQVIST S, NILSSON D, et al.. New diamond nanofabrication process for hard X-ray zone plates[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2011, 29(6):06FG03.
KIRZ J. Phase zone plates for X rays and the extreme UV[J]. Journal of the Optical Society of America, 1974, 64(3):301-309.
POLYANSKIY M. Refractive index database[EB/OL]. 2015. https://refractiveindex.info https://refractiveindex.info .
0
浏览量
419
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构