浏览全部资源
扫码关注微信
1.北京卫星环境工程研究所, 北京 100094
2.北京市航天产品智能装配技术与装备工程技术研究中心, 北京 100094
[ "孙刚(1972-), 男, 黑龙江哈尔滨人, 博士, 研究员, 1996年于哈尔滨工业大学获得学士学位, 1999年于中国空间技术研究院获得硕士学位, 2014年于西北工业大学获得博士学位, 主要从事航天器数字化总装与测试技术研究。E-mail:sungang_2017@163.com" ]
[ "杨再华(1980-), 男, 河北涞水人, 硕士, 高级工程师, 2002年于长春理工大学获得学士学位, 2005年于清华大学获得硕士学位, 主要从事航天器总装相关的大尺寸几何量精度测量研究。E-mail:13466501817@139.com" ]
收稿日期:2017-02-09,
录用日期:2017-5-4,
纸质出版日期:2017-11-25
移动端阅览
孙刚, 杨再华, 万毕乐, 等. “高分二号”上相机和星敏感器相对安装姿态的测量[J]. 光学 精密工程, 2017,25(11):2931-2938.
Gang SUN, Zai-hua YANG, Bi-le WAN, et al. High precision automatic measurement for alignment of camera and star-sensor in GF-2[J]. Optics and precision engineering, 2017, 25(11): 2931-2938.
孙刚, 杨再华, 万毕乐, 等. “高分二号”上相机和星敏感器相对安装姿态的测量[J]. 光学 精密工程, 2017,25(11):2931-2938. DOI: 10.3788/OPE.20172511.2931.
Gang SUN, Zai-hua YANG, Bi-le WAN, et al. High precision automatic measurement for alignment of camera and star-sensor in GF-2[J]. Optics and precision engineering, 2017, 25(11): 2931-2938. DOI: 10.3788/OPE.20172511.2931.
为了精确测量"高分二号"(GF-2)卫星上相机和星敏感器的相对安装姿态,建立了一套高精度自动化测量系统。针对该系统研究了基于多传感器数据融合的高精度测量算法、基于理论安装数据驱动的自动测量模型、以及基于图像识别的立方镜法线搜索算法。该测量系统主要由二维龙门导轨、精密转台和CCD成像辅助准直的自准直经纬仪构成,通过融合精密转台的转动角度、自准直经纬仪的俯仰角和偏航角等数据计算被测设备安装姿态角度。测量时需先对系统进行标定,制定自动测量规划,然后通过电机驱动使设备自动到达预定位置和角度进行测量。若星上设备安装偏差较大导致被测对象超出自准直经纬仪测量范围时,可启动CCD相机对被测对象局部区域进行搜索识别,并引导自准直经纬仪实现精确准直测量。对测量系统进行了实验验证,结果显示:该系统姿态测量精度可以达到5",与标准值比对最大偏差为4.1";该测量系统已用于GF-2卫星的相机和星敏器相对姿态测量中,重复标准差最大为3.5",满足GF-2对机上设备安装姿态测量精度的需求。
To alignment the posture between the camera and the star-sensor on the GF-2 satellite
a high precision automatic measurement system was established. For the measuring system
a high precision measurement algorithm based on multi-sensor fusion
an automatic measurement plane based on design data
and a cube mirror normal measurement method based on geometric figure recognition were investigated. The system was mainly constituted by a double column guideway system
a precision turntable
and an autocollimation theodolite assisted with CCD camera. The instrument posture was calculated by fusing the data of the pitch angle and the horizontal angle of the theodolite and the rotation angle of the turntable. In measurement
the system was fixed and calibrated
and an automatic measurement plan was generated firstly. Then the theodolite was driven to the desired location and desired angle. If there was no collimated light from the mirror to the theodolite
the CCD camera would search the cube mirror and calculate the deviationt of the theodolite. Then the location and angles of the theodolite were adjusted and the posture of the cube mirror of the instrument was measured. Experimental results indicate that the precision of the system is within 5" and the maximum deviation compared to the standard value is 4.1". The system has been used in the assembly of GF-2 satellite
its maximum measuring standard deviation is 3.5"
and satisfies the system requirements for higher precisions and rapid speeds.
潘腾, 关晖, 贺玮. "高分二号"卫星遥感技术[J].航天返回与遥感, 2015, 36(4):16-24.
PAN T, GUAN H, HE W. GF-2 satellite remote sensing technology[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4):16-24. (in Chinese)
姜海滨, 罗世魁, 曹东晶, 等. "高分二号"卫星轻小型高分辨率相机技术[J].航天返回与遥感, 2015, 36(4):25-33.
JIANG H B, LUO SH K, CAO D J, et al.. Technology of high-density and high-resolution camera of GF-2 satellite[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4):25-33. (in Chinese)
魏新国, 王清龙, 李健, 等.星敏感器和遥感相机主光轴交联角的在轨检校[J].光学 精密工程, 2013, 21(2):274-280.
WEI X G, WANG Q L, LI J, et al.. On-orbit calibration for cross-angle between optical axes of star sensor and remote sensing camera[J]. Opt. Precision Eng., 2013, 21(2):274-280. (in Chinese)
宋俊儒, 邢辉, 穆生博, 等.航空红外相机的装调[J].光学 精密工程, 2015, 23(8):2125-2133.
SONG J R, XING H, MU SH B, et al.. Alignment of aerial multi-angle infrared camera[J]. Opt. Precision Eng., 2015, 23(8):2125-2133. (in Chinese)
YANG Z H, YANG S, WAN B L, et al.. Posture metrology for aerospace camera in the assembly of spacecraft[J]. SPIE, 2015, 9903:990331.
ZHANG R, CHEN H H, LI G Y, et al.. Preliminary research on data abnormality diagnosis methods of spacecraft precision measurement[J]. Journal of Engineering Research and Applications, 2015, 5(2):9-15.
ZHANG R, CHEN H H, YANG Z H, et al.. Design of a data processing system for automatic measurement of spacecraft[J]. Journal of Convergence Information Technology (JCIT), 2015, 10(2):57-61.
潘廷耀, 范百兴, 西勤, 等.经纬仪多基准尺联合标定技术研究[J].测绘工程, 2016, 25(5):56-58.
PAN T Y, FAN B X, XI Q, et al.. Research of theodolite scale joint calibration technology[J]. Engineering of Surveying and Mapping, 2016, 25(5):56-58. (in Chinese)
高廷, 孙安斌, 马骊群, 等.一种新型带有自标定的数字准直瞄准测量系统[J].计测技术, 2016, 36(3):18-21.
GAO T, SUN A B, MA L Q, et al.. A novel digital collimation telescope with self-calibration[J]. Metrology & Measurement Technology, 2016, 36(3):18-21. (in Chinese)
胡文川, 袭祖荣, 张国雄, 等.大尺寸空间异面直线夹角的检测[J].光学 精密工程, 2012, 20(7):1427-1433.
HU W CH, QIU Z R, ZHANG G X, et al.. Measurement of large-scale space angle formed by non-uniplanar lines[J]. Opt. Precision Eng., 2012, 20(7):1427-1433. (in Chinese)
LI Y H, QIU Y R, CHEN Y X, et al.. A novel orientation and position measuring system for large & medium scale precision assembly[J]. Optics and Lasers in Engineering, 2014, 62:31-37.
0
浏览量
414
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构