浏览全部资源
扫码关注微信
南京邮电大学 Peter Grünberg研究中心, 江苏 南京 210003
[ "王永进(1977-), 男, 江苏徐州人, 博士, 教授, 2005年于中科院上海微系统与信息技术研究所获得博士学位, 先后在德国弗莱堡大学、日本东北大学和德国于利希研究中心从事科研工作, 主要从事可见光通信和光传感方面的研究。E-mail: wangyj@njupt.edu.cn" ]
[ "张锋华(1994-), 女, 江苏南通人, 硕士研究生, 2016年于南京师范大学获得学士学位, 主要研究方向为可见光通信和光传感。E-mail:1016010313@njupt.edu.cn" ]
收稿日期:2017-05-23,
录用日期:2017-6-26,
纸质出版日期:2017-12-25
移动端阅览
王永进, 张锋华, 高绪敏, 等. 面向可见光波段的非周期悬空GaN薄膜光栅[J]. 光学 精密工程, 2017,25(12):3020-3026.
Yong-jin WANG, Feng-hua ZHANG, Xu-min GAO, et al. Freestanding non-periodic GaN gratings in visible wavelength region[J]. Optics and precision engineering, 2017, 25(12): 3020-3026.
王永进, 张锋华, 高绪敏, 等. 面向可见光波段的非周期悬空GaN薄膜光栅[J]. 光学 精密工程, 2017,25(12):3020-3026. DOI: 10.3788/OPE.20172512.3020.
Yong-jin WANG, Feng-hua ZHANG, Xu-min GAO, et al. Freestanding non-periodic GaN gratings in visible wavelength region[J]. Optics and precision engineering, 2017, 25(12): 3020-3026. DOI: 10.3788/OPE.20172512.3020.
基于严格耦合波理论,提出了一种在可见光波段能调控入射光相位的非周期悬空氮化镓(GaN)薄膜光栅。首先,采用有限差分时域(FDTD)方法,通过改变光栅的周期、占空比等参数仿真计算非周期悬空GaN薄膜光栅的光响应。然后,采用双面加工工艺和氮化物背后减薄技术在硅基GaN晶圆上制备非周期悬空GaN薄膜光栅,控制入射光束的相移。最后,通过角分辨微反射谱实验和光致发光测量实验表征了该薄膜光栅的光学性能。角分辨微反射谱实验结果显示非周期悬空GaN薄膜光栅的光学性能与FDTD的理论分析一致;光致发光测量实验显示其光致发光(PL)强度比硅衬底GaN光栅大大增强,峰值从364.3 nm转移到378.7 nm。另外,在可见光波段内,该悬空非周期GaN光栅有较大的入射角容忍度,为-25°~25°。得到的结果表明,研制的悬空非周期GaN光栅有助于提高光提取效率。
On the basis of Rigorous Coupled Wave Analysis(RCWA)
an array of freestanding non-periodic GaN gratings were proposed to control the phase of an incident beam in the visible wavelength region. Firstly
the Finite Difference Time Domain(FDTD) method was used to calculate the optical responses of non-periodic GaN gratings based on the parameters such as period and duty cycle. Then
a double-sided process and nitride back thinning technology were developed to fabricate freestanding non-periodic GaN gratings on a GaN-on-silicon platformand to control the different phase shifts of incident light. Finally
the optical performance of non-periodic GaN gratings was experimentally demonstrated by angular resolved micro-reflectance spectra and photoluminescence spectra. The angular resolved micro-reflectance spectra show that the optical performance of the freestanding non-periodic GaN gratings is in good agreement with that of the theoretical simulations by the FDTD method. The photoluminescence spectra indicate that photoluminescence (PL) intensities of the GaN gratings are greatly improved as compared to that of the GaN-on-silicon
and their emission peaks are from 364.3nm to 378.7nm. Moreover
experimental results give that the incident angular tolerance of the GaN gratings is -25°-25° in the visible wavelength region. In conclusion
the gratings are helpful for the improvement of the light extraction efficiency.
周传宏, 王磊, 聂娅, 等.介质光栅导模共振耦合波分析[J].物理学报, 2002, 51(1):68-73.
ZHOU CH H, WANG L, NIE Y, et al.. The rigorous coupled-wave analysis of guided-mode resonance in dielectric gratings[J]. Acta Physica Sinica, 2002, 51(1):68-73. (in Chinese)
黄萍, 赵紫娟, 雒倩男, 等.角度可调谐硅基氮化镓导模共振滤波器[J].光通信研究, 2016(5):50-54.
HUANG P, ZHAO Z J, LUO Q N, et al.. The angle adjustable Si-based GaN guided-mode resonance filters[J]. Study on Optical Communications, 2016(5):50-54. (in Chinese)
MIZUTANI A, KIKUTA H, IWATA K. Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching[J]. Journal of the Optical Society of America A, 2005, 22(2):355-360.
WAWRO D D, TIBULEAC S, MAGNUSSON R, et al.. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings[J]. SPIE, 2000, 3911:86-94.
FOLAND S, CHOI K H, LEE J B. Pressure-tunable guided-mode resonance sensor for single-wavelength characterization[J]. Optics Letters, 2010, 35(23):3871-3387.
郭永兴, 熊丽, 孔建益, 等.滑动式光纤布拉格光栅位移传感器[J].光学 精密工程, 2017, 25(1):50-58.
GUO Y X, XIONG L, KONG J Y, et al.. Sliding type fiber Bragg grating displacement sensor[J]. Opt. Precision Eng., 2017, 25(1):50-58. (in Chinese)
田赫, 掌蕴东, 白岩.单光学谐振器感应透明现象的窄带透射峰[J].光学 精密工程, 2017, 25(1):59-64.
TIAN H, ZHANG Y D, BAI Y. Transmission peak with narrow bandwidth in single optical resonator induced-transparency[J]. Opt. Precision Eng., 2017, 25(1):59-64. (in Chinese)
FATTAL D, LI J J, PENG ZH, et al.. Flat dielectric grating reflectors with focusing abilities[J]. Optics and Photonics News, 2010, 21(12):42.
CARLETTI L, MALUREANU R, MØRK J, et al.. High-index-contrast grating reflector with beam steering ability for the transmitted beam[J]. Optics Express, 2011, 19(23):23567-23572.
LU M Y, ZHAI H Q, MAGNUSSON R. Focusing light with curved guided-mode resonance reflectors[J]. Micromachines, 2011, 2(2):150-156.
李林青, 吕燕伍. GaN-based LED基础光栅结构实现光的表面等离极化增强[J].半导体学报, 2014, 35(4):043003.
LI L Q, LÜ Y W. Surface-plasmon-enhanced light transmission intensity with a basic grating in GaN-based LED[J]. Journal of Semiconductors, 2014, 35(4):043003. (in Chinese)
顾新宇. GaN-LED出射光束整形和出光效率提高[D]. 苏州: 苏州大学, 2016. http://d.g.wanfangdata.com.cn/Thesis_D01006810.aspx
GU X Y. Beam Shaping and Light Extraction Efficiency Enhancement of GaN-LED [D]. Suzhou:Soochow University, 2016. (in Chinese)
吕凡敏. 基于图形化SOI衬底的氮化镓微驱动器的研究[D]. 南京: 南京邮电大学, 2016. http://d.wanfangdata.com.cn/Thesis/D821360
LÜ F M. Study of GaN Electrostastic Comb Actuators on Patterned-SOI [D]. Nanjing:Nanjing University of Posts and Telecommunications, 2016. (in Chinese)
WU T T, SYU Y C, WU S H, et al.. Sub-wavelength GaN-based membrane high contrast grating reflectors[J]. Optics Express, 2012, 20(18):20551-20557.
WANG W, GAO X M, FANG X J, et al.. Transmission properties of Fabry-Pérot filter consisting of silicon-based high-contrast gratings[J]. IEEE Photonics Journal, 2016, 8(1):6800614.
WANG W, ZHU G Y, LIU Q F, et al.. Angle-and polarization-dependent spectral characteristics of circular grating filters[J]. Optics Express, 2016, 24(10):11033-11042.
吴娜, 谭鑫, 于海利, 等.宽波段全息-离子束刻蚀光栅的设计及工艺[J].光学 精密工程, 2015, 23(7):1978-1983.
WU N, TAN X, YU H L, et al.. Design and fabrication of broadband holographic ion beam etching gratings[J]. Opt. Precision Eng., 2015, 23(7):1978-1983. (in Chinese)
公民, 戴晔, 宋娟, 等.单光束飞秒激光诱导的电子态密度分布对双周期纳米光栅的影响[J].光学学报, 2016, 36(5):0514001.
GONG M, DAI Y, SONG J, et al.. Influence of electron density distribution induced by single beam femtosecond laser on double-periodic nanogratings[J]. Acta Optica Sinica, 2016, 36(5):0514001. (in Chinese)
LIU A J, HOFMANN W, BIMBERG D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs[J]. Optics Express, 2014, 22(10):11804-11811.
MAGNUSSON R. Wideband resonant reflectors with zero-contrast gratings:USA, US2015369976A1[P]. 2015-12-24.
WANG CH, ZHUANG W, TANG W CH. Novel three-dimensional frequency selective surface with incident angle and polarization independence[C]. Proceedings of 2015 International Symposium on Antennas and Propagation , IEEE, 2015:1-3. http://ieeexplore.ieee.org/document/7447390/
BAI D, WU T, LI X, et al.. Suspended GaN-based nanostructure for integrated optics[J]. Applied Physics B, 2016, 122:9.
TAKASHIMA Y, TANABE M, HARAGUCHI M, et al.. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO 2 underlayer[J]. Optics Communications, 2016, 369:38-43.
LÓPEZ-GARCÍA M, GALISTEO-LÓPEZ J F, LÓPEZ C, et al.. Light confinement by two-dimensional arrays of dielectric spheres[J]. Physical Review B, 2012, 85(23):235145.
0
浏览量
470
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构