浏览全部资源
扫码关注微信
1.广州大学 物理与电子工程学院, 广东 广州 510006
2.华南师范大学 信息与光电子科技学院, 广东 广州 510006
[ "张成云(1979-), 男, 安徽桐城人, 博士, 讲师, 2013年于华南师范大学获得博士学位, 主要从事纳米光子学与功能器件方面的研究。E-mail:zarwu@qq.com" ]
收稿日期:2017-04-28,
录用日期:2017-6-22,
纸质出版日期:2017-12-25
移动端阅览
张成云, 刘海英, 满文庆, 等. 飞秒激光正交线扫描诱导表面微纳结构[J]. 光学 精密工程, 2017,25(12):3063-3069.
Cheng-yun ZHANG, Hai-ying LIU, Wen-qing MAN, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J]. Optics and precision engineering, 2017, 25(12): 3063-3069.
张成云, 刘海英, 满文庆, 等. 飞秒激光正交线扫描诱导表面微纳结构[J]. 光学 精密工程, 2017,25(12):3063-3069. DOI: 10.3788/OPE.20172512.3063.
Cheng-yun ZHANG, Hai-ying LIU, Wen-qing MAN, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J]. Optics and precision engineering, 2017, 25(12): 3063-3069. DOI: 10.3788/OPE.20172512.3063.
通过控制激光偏振与扫描方向,利用飞秒脉冲激光正交线扫描的微加工方式,在硅和不锈钢表面诱导出了规则分布的复合表面微纳结构并分析了激光能量密度对微纳表面结构形成的影响。实验显示:当激光的能量密度接近材料烧蚀阈值时,在硅表面诱导出了周期条纹嵌套纳米孔的双层复合二维结构,在不锈钢表面则诱导出了依赖于激光偏振方向的纳米点阵列分布,分析认为纳米点阵列是由周期条纹结构边缘发生断裂而生成的。另外,当激光的能量密度大于材料烧蚀阈值时,在硅和不锈钢表面会烧蚀出规则分布的微米级孔洞结构。实验结果表明:第一次扫描诱导出的表面微纳结构增加了对入射激光的吸收,促进入射激光与表面等离子体波的耦合,加强了后扫描的烧蚀效果,使得后扫描诱导出的微纳结构占主导。文中提出的正交线扫描的加工方式为微纳表面结构的制备提供了新的思路。
With controlling the femtosecond (fs) laser polarization and scanning direction
the regular distribution of composite micro/nano structures was induced on the surfaces of silicon and stainless steel by Orthogonal Line Scanning Processing (OLSP). The influence of laser fluence on the micro/nano structures was studied. The experimental results show that two-dimensional (2D) composite structures nested with periodic ripples and nanoholes are induced on the silicon wafer surface
however
nanorod arrays at the edge of scanning area are induced on the stainless steel surface when the laser fluence is close to the material ablation threshold. The analysis indicates that the nanorod arrays are formed by the fracture of periodic ripples. Moreover
when laser fluence is higher than the ablation threshold
the regular distribution of micro hole structures is induced both on the surfaces of silicon and stainless steel. The experimental results demonstrate that the micro/nano structures induced by the first line scanning enhances its laser absorption and promotes the coupling between the incident fs laser and the surface plasma wave
so that the ablation of the second scanning is enhanced and the later structures induced by the second scanning becomes a dominating. In conclusion
the OLSP provides a new approach for fabrication of surface micro/nano structures.
乔红贞, 王飞, 张楠, 等.飞秒激光在钨表面制备二维周期复合结构的研究[J].中国激光, 2017, 44(1):0102010.
QIAO H ZH, WANG F, ZHANG N, et al.. Femtosecond laser fabrication of two-dimensional periodic composite structures on tungsten surface[J]. Chinese Journal of Lasers, 2017, 44(1):0102010. (in Chinese)
YAO J W, ZHANG CH Y, LIU H Y, et al.. High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses[J]. Optics Express, 2012, 20(2):905-911.
LI X F, ZHANG CH Y, LI H, et al.. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses[J]. Optics Express, 2014, 22(23):28086-28099.
ZHANG CH Y, YAO J W, LIU H Y, et al.. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses[J]. Optics Letters, 2012, 37(6):1106-1108.
HER T H, FINLAY R J, WU C, et al.. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12):1673-1675.
黄媛媛, 钱静, 邵冲云, 等.飞秒激光在不同羟基浓度纯石英玻璃内部诱导缺陷研究[J].中国激光, 2017, 44(1):102011.
HUANG Y Y, QIAN J, SHAO CH Y, et al.. Femtosecond laser induced defects in pure silica glass with different hydroxyl concentrations[J]. Chinese Journal of Lasers, 2017, 44(1):102011. (in Chinese)
SHEN M Y, CROUCH C H, CAREY J E, et al.. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Applied Physics Letters, 2004, 85(23):5694-5696.
VOROBYEV A Y, GUO CH L. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7):6455-6460.
QI L T, NISHⅡ K, NAMBA Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel[J]. Optics Letters, 2009, 34(12):1846-1848.
DUFFT D, ROSENFELD A, DAS S K, et al.. Femtosecond laser-induced periodic surface structures revisited:a comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3):034908.
BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25):4462-4464.
JIA X, JIA T Q, ZHANG Y, et al.. Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses[J]. Optics Letters, 2010, 35(8):1248-1250.
LE HARZIC R, SCHUCK H, SAUER D, et al.. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses[J]. Optics Express, 2005, 13(17):6651-6656.
HUANG M, ZHAO F L, CHENG Y, et al.. Origin of laser-induced near-subwavelength ripples:interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12):4062-4070.
LE HARZIC R, DÖRR D, SAUER D, et al.. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation[J]. Applied Physics Letters, 2011, 98(21):211905.
JIA T Q, CHEN H X, HUANG M, et al.. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Physical Review B, 2005, 72(12):125429.
ZHANG CH Y, YAO J W, LAN SH, et al.. Effects of plasma confinement on the femtosecond laser ablation of silicon[J]. Optics Communications, 2013, 308:54-63.
余佳, 何书通, 宋寰宇, 等.飞秒激光前向转移诱导产生金属纳米结构薄膜[J].中国激光, 2017, 44(1):102009.
YU J, HE SH T, SONG H Y, et al.. Metal nanostructured film generated by femtosecond laser induced forward transfer[J]. Chinese Journal of Lasers, 2017, 44(1):102009. (in Chinese)
YANG Y, YANG J J, XUE L, et al.. Surface patterning on periodicity of femtosecond laser-induced ripples[J]. Applied Physics Letters, 2010, 97(14):141101.
GUAY J M, LESINA A C, C T G, et al.. Laser-induced plasmonic colours on metals[J]. Nature Communication, 2017, 8:16095.
HUANG M, ZHAO F L, CHENG Y, et al.. Origin of laser-induced near-subwavelength ripples:interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12):4062-4070.
BONSE J, ROSENFELD A, KRVGER J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Applied Surface Science, 2011, 257(12):5420-5423.
0
浏览量
199
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构