浏览全部资源
扫码关注微信
1.东北林业大学 理学院, 黑龙江 哈尔滨 150040
2.东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040
3.哈尔滨医科大学附属第一医院 综合癌症中心, 黑龙江 哈尔滨 150001
[ "田赫(1983-), 男, 山东莱芜人, 博士, 讲师, 2005年、2012年于哈尔滨工业大学分别获得学士、博士学位, 主要从事激光、光学传感及检测方面的研究。E-mail:tianhe@nefu.edu.cn" ]
收稿日期:2017-04-28,
录用日期:2017-8-10,
纸质出版日期:2017-12-25
移动端阅览
田赫, 陈天庭, 白岩, 等. 玻璃封装医用小型光纤光栅温度传感探头[J]. 光学 精密工程, 2017,25(12):3105-3110.
He TIAN, Tian-ting CHEN, Yan BAI, et al. Medical miniature fiber grating temperature sensing probe encapsulated with glass[J]. Optics and precision engineering, 2017, 25(12): 3105-3110.
田赫, 陈天庭, 白岩, 等. 玻璃封装医用小型光纤光栅温度传感探头[J]. 光学 精密工程, 2017,25(12):3105-3110. DOI: 10.3788/OPE.20172512.3105.
He TIAN, Tian-ting CHEN, Yan BAI, et al. Medical miniature fiber grating temperature sensing probe encapsulated with glass[J]. Optics and precision engineering, 2017, 25(12): 3105-3110. DOI: 10.3788/OPE.20172512.3105.
针对体内测温、特别是肿瘤热疗体内温度实时监测对温度传感探头的体积、韧性和抗电磁干扰能力的要求,对医用小型光纤光栅温度传感探头进行了研究。提出了利用玻璃管封装短光纤布拉格光栅来有效避免应力引起的误差以及金属封装对电磁场分布的影响,同时提出用医用聚氨酯套管包裹探头及光纤来有效地保护探头及光纤并使其具备很好的韧性。封装后,探头截面直径为1 mm、长度约为4 mm。实验测量了稳定温度源在不同温度下探头的反射波长响应和温度变化时探头的响应时间,并测量了医用热疗机加热猪肉时肉内部的温度变化过程。结果表明,体温范围内探头反射波长与温度的线性相关系数可达0.999 95,温度传感精度为0.2℃,探头最大响应时间约为4 s,并能实时监测医用热疗机加热猪肉时其内部的温度变化。
For body inner temperature measurement
especially for tumor hyperthermia temperature real-time monitoring
temperature sensing probes should have smaller volume
good toughness and resistance to electromagnetic interference ability. This paper focuses on a medical small optical fiber grating temperature sensing probe. The glass tube was used to encapsulate short fiber Bragg gratings to allow the probes to effectively avoid the error caused by stress and to eliminate the influence of metal packages on the distribution of electromagnetic field. Meanwhile
the probe and fiber were wrapped in medical polyurethane sleeve to effectively protect the probe and fiber and make them be good toughness. After packaging
the cross-section diameter and the length of the probe are 1 mm and about 4 mm
respectively. The reflection wavelengths of the probe at different temperatures
the response time of the probe at changed temperature and the internal temperature change process of the pork heated by the medical radiofrequency hyperthermia machine were measured experimentally. The results show that the linear correlation coefficient between the reflection wavelength of the probe and the temperature is 0.999 95 in the body temperature range. The temperature sensing accuracy and the maximum response time of the probe is 0.2℃ and about 4 s
respectively. Moreover
the probe can be used to monitor the internal temperature change of the pork heated by the medical radiofrequency hyperthermia machine in real-time.
PELAPRAT J M, WANG B SH. Monolithic fiberoptic probes enable medical imaging with OCT[J]. Laser Focus World, 2013, 49(8):49-52.
VALAPARLA S K, GAO F, DANIELE G, et al.. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles[J]. Journal of Medical Imaging, 2015, 2(2):026002.
LU M. Brain white matter fiber tracking reconstruction algorithm based on bayesian model[J]. Journal of Medical Imaging and Health Informatics, 2015, 5(8):1703-1707.
KANG H W. Optical feedback-induced light modulation for fiber-based laser ablation[J]. Lasers in Medical Science, 2014, 29(6):1919-1925.
RORIZ P, FRAZ O O, LOBO-RIBEIRO A B, et al.. Review of fiber-optic pressure sensors for biomedical and biomechanical applications[J]. Journal of Biomedical Optics, 2013, 18(5):050903.
ALEKSANDROV S E, GAVRILOV G A, SOTNIKOVA G Y, et al.. Optical-fiber-tip temperature control system for fiber-coupled laser modules in medical equipment[J]. Semiconductors, 2014, 48(1):129-134.
MASSARONI C, SACCOMANDI P, SCHENA E. Medical smart textiles based on fiber optic technology:an overview[J]. Journal of Functional Biomaterials, 2015, 6(2):204-221.
HILL K O, FUJⅡ Y, JOHNSON D C, et al.. Photosensitivity in optical fiber waveguides:application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649.
郭永兴, 熊丽, 孔建益, 等.滑动式光纤布拉格光栅位移传感器[J].光学 精密工程, 2017, 25(1):50-58.
GUO Y X, XIONG L, KONG J Y, et al.. Sliding type fiber Bragg grating displacement sensor[J]. Opt. Precision Eng., 2017, 25(1):50-58. (in Chinese)
赵斌, 仲志成, 林君, 等.基于光纤光栅传感地层应力的监测方法与实验[J].光学 精密工程, 2016, 24(10):346-352.
ZHAO B, ZHONG ZH CH, LIN J, et al.. Monitoring method and experiment for stratum stress based on fiber Bragg grating sensing[J]. Opt. Precision Eng., 2016, 24(10):346-352. (in Chinese)
杨玉强, 杨群, 葛伟, 等.温度自动补偿超磁致伸缩材料布拉格光栅光纤电流传感器[J].光学 精密工程, 2016, 34(10):2377-2383.
YANG Y Q, YANG Q, GE W, et al.. Temperature compensated GMM-FBG current sensor[J]. Opt. Precision Eng., 2016, 24(10):2377-2383. (in Chinese)
蒋善超, 隋青美, 王静, 等.流速/温度共采的光纤布拉格光栅涡轮流速传感器[J].光学 精密工程, 2014, 22(10):2611-2616.
JIANG SH CH, SUI Q M, WANG J, et al.. FBG turbine flow rate sensor for acquiring flow rate and temperature simultaneously[J]. Opt. Precision Eng., 2014, 22(10):2611-2616. (in Chinese)
INOUE A, SHIGEHARA M, ITO M, et al.. Fabrication and application of fiber Bragg grating-a review[J]. Optoelectronics-Devices and Technologies, 1995, 10(1):119-130.
GUPTA S, MIZUNAMI T, YAMAO T, et al.. Fiber Bragg grating cryogenic temperature sensors[J]. Applied Optics, 1996, 35(25):5202-5205.
YOFFE G W, KRUG P A, OUELLETTE F, et al.. Passive temperature-compensating package for optical fiber gratings[J]. Applied Optics, 1995, 34(30):6859-6861.
张学智, 祝连庆, 张荫民, 等.光纤光栅非金属耐腐蚀封装及其温度特性研究[J].激光与红外, 2015, 45(4):437-441.
ZHANG X ZH, ZHU L Q, ZHANG Y M, et al.. Fiber Bragg grating with nonmetal and corrosion resisting packaging and its temperature characteristic[J]. Laser & Infrared, 2015, 45(4):437-441. (in Chinese)
李杰燕, 张东生, 周祖德, 等.耐高温全金属化封装的光纤法布里-珀罗干涉仪和光纤光栅复合传感器[J].光学学报, 2013, 33(S1):106002.
LI J Y, ZHANG D SH, ZHOU Z D, et al.. High temperature resistant metal packaged multiplexed fiber-optic extrinsic Fabry-Perot interferometer and fiber Bragg grating sensor[J]. Acta Optica Sinica, 2013, 33(S1):106002. (in Chinese)
0
浏览量
591
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构