浏览全部资源
扫码关注微信
北京理工大学 光电学院, 北京 100081
[ "张镜水(1989-), 女, 吉林长春人, 博士研究生, 2011年于北京理工大学获得学士学位, 主要从事太赫兹探测及成像方面的研究。E-mail:jingshui_zhang@163.com" ]
[ "赵跃进(1958-), 男, 河北人, 教授, 博士生导师, 1990年于北京理工大学获得博士学位, 现主要从事主要研究光电仪器、图像处理、MEMS技术、THz成像技术研究。E-mail:yjzhao@bit.edu.cn" ]
收稿日期:2017-06-01,
录用日期:2017-7-5,
纸质出版日期:2017-12-25
移动端阅览
张镜水, 孔令琴, 董立泉, 等. 太赫兹CMOS场效应管模型及实验分析[J]. 光学 精密工程, 2017,25(12):3128-3136.
Jing-shui ZHANG, Lingqin KONG, Li-quan DONG, et al. Terahertz CMOS transistor model and experimental analysis[J]. Optics and precision engineering, 2017, 25(12): 3128-3136.
张镜水, 孔令琴, 董立泉, 等. 太赫兹CMOS场效应管模型及实验分析[J]. 光学 精密工程, 2017,25(12):3128-3136. DOI: 10.3788/OPE.20172512.3128.
Jing-shui ZHANG, Lingqin KONG, Li-quan DONG, et al. Terahertz CMOS transistor model and experimental analysis[J]. Optics and precision engineering, 2017, 25(12): 3128-3136. DOI: 10.3788/OPE.20172512.3128.
针对商业CMOS(互补金属氧化物半导体)场效应管模型在高频下易失效的问题,运用ADS软件构建了基于经典动力学理论的非线性RCL传输线模型,并结合实测数据说明了本文模型的精准性及太赫兹波段场效应管的工作原理。构建了基于经典动力学理论的非线性RCL传输线模型仿真系统,并将其与商业模型仿真结果进行对比,分析了在太赫兹波段本文模型与商业模型的区别。测试了现有场效应管探测器的频率响应,并对实测数据与两种模型仿真数据进行对比,说明本文模型提高了预测精度。最后,结合3
σ
原则分析了场效应管沟道尺寸对载流子散射效应的影响,以及场效应管进入弹道工作模式的条件。实验结果表明:本文模型与商业模型的区别主要在于模型中是否存在电感部分,该部分可作为场效应管沟道中载流子动量是否守恒及散射效应是否可以忽略的表征参数。相较于商业模型,本文模型对探测器最佳频率工作点的预测精准度可提高0.3%,对探测器带宽的预测精准度可提高约10%。该项研究为CMOS场效应管模型的精确建立及仿真分析提供了良好基础。
As the commercial CMOS (Complementary Metal Oxide Semiconductor) transistor model will lose the accuracy in a high frequency range
a nonlinear RCL transmission line model based on classic kinetic theory was developed with ADS software. The accuracy of proposed model and the working principle of the CMOS in THz range were discussed based on measured data. A simulation system for the nonlinear RCL transmission line model was constructed
and simulation results were compared with that of commercial model and the difference between the proposed model and the commercial CMOS model in THz range was analyzed. Then
the frequency responses of current CMOS transistors were tested
tested data were compared with those of the simulation data from the two kinds of models. The results demonstrate that the proposed model has been improved the prediction accuracy. Finally
the effects of channel size of transistor on the scattering effect of carriers were analyzed and conditions of transistor to turn on ballistic mode were given with 3
σ
rules. The results show that the difference between the two models mainly focuses on the inductance part
which could represent the momentum conservation of carriers in transistor channel and if the scattering effect could be neglected or not. Compared with the commercial model
the prediction accuracy for the optimal resonant frequency of a detector has improved by 0.3%
and that for the optimal working bandwidth of the detector has increased about 10%. This study provides a good foundation for the accurate establishment and simulation analysis of CMOS transistor models.
DYAKONOV M, SHUR M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(3):380-387.
SUN J D. Realization of terahertz self-mixing detectors based on AlGaN / GaN HEMT [M]. In:Field-effect Self-mixing Terahertz Detectors. Berlin, Heidelberg:Springer, 2016. http://link.springer.com/chapter/10.1007%2F978-3-662-48681-8_3
POPOV V V, ERMOLAEV D M, MAREMYANIN K V, et al.. High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array[J]. Applied Physics Letters, 2011, 98(15):153504.
QIN H, SUN J D, LIANG S X, et al.. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116:760-765.
SHERRY A C H, THEVENET D, DEDIEU S. Low-Cost Highly-Integrated Room-Temperature Terahertz Detection Using Silicon Technologies, in 8th THz Days[Z]. 2015.
RYU M W, LEE J S, KIM K S, et al.. High-performance plasmonic THz detector based on asymmetric FET with vertically integrated antenna in CMOS technology[J]. IEEE Transactions on Electron Devices, 2016, 63(4):1742-1748.
LU J Q, SHUR M S, HESLER J L, et al.. Terahertz detector utilizing two-dimensional electronic fluid[J]. IEEE Electron Device Letters, 1998, 19(10):373-375.
HADI R A, SHERRY H, GRZYB J, et al.. A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(12):2999-3012.
CHAN M S, HUI K Y, HU C M, et al.. A robust and physical BSIM3 non-quasi-static transient and AC small-signal model for circuit simulation[J]. IEEE Transactions on Electron Devices, 1998, 45(4):834-841.
秦华, 黄永丹, 孙建东, 等.二维电子气等离激元太赫兹波器件[J].中国光学, 2017, 10(1):51-67, 150.
QIN H, HUANG Y D, SUN J D, et al.. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chinese Journal of Optics, 2017, 10(1):51-67, 150. (in Chinese)
GRASSER T, TANG T W, KOSINA H, et al.. A review of hydrodynamic and energy-transport models for semiconductor device simulation[J]. Proceedings of the IEEE, 2003, 91(2):251-274.
PREU S, KIM S, VERMA R, et al.. An improved model for non-resonant terahertz detection in field-effect transistors[J]. Journal of Applied Physics, 2012, 111(2):024502.
GUTIN A, NAHAR S, HELLA M, et al.. Modeling terahertz plasmonic Si FETs with SPICE[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5):545-549.
IBRAHIM N Y, RAFAT N H, ELNAHWY S E A. Modeling of field effect transistor channel as a nonlinear transmission line for terahertz detection[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(10):606-616.
KHMYROVA I, SEIJYOU Y. Analysis of plasma oscillations in high-electron mobility transistorlike structures:Distributed circuit approach[J]. Applied Physics Letters, 2007, 91(14):143515.
0
浏览量
496
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构