浏览全部资源
扫码关注微信
河南理工大学 电气工程与自动化学院导航制导实验室, 河南 焦作 454000
[ "杨金显(1980-), 男, 山东曹县人, 博士, 副教授, 硕士生导师, 2008年于哈尔滨工程大学获得博士学位, 主要从事MEMS惯性测量及在随钻、电网运动和变形监测中的应用研究。E-mail:yangjinxian@hpu.edu.cn" ]
[ "杨闯(1992-), 男, 河南滑县人, 硕士研究生, 主要从事惯性测量及其应用研究。E-mail:yang_ch126@126.com" ]
收稿日期:2017-04-12,
录用日期:2017-6-7,
纸质出版日期:2017-12-25
移动端阅览
杨金显, 杨闯. 应用分层自适应匹配追踪重构MEMS陀螺信号[J]. 光学 精密工程, 2017,25(12):3160-3168.
Jin-xian YANG, Chuang YANG. MEMS gyro signal reconstruction via layerwise and adaptive MP[J]. Optics and precision engineering, 2017, 25(12): 3160-3168.
杨金显, 杨闯. 应用分层自适应匹配追踪重构MEMS陀螺信号[J]. 光学 精密工程, 2017,25(12):3160-3168. DOI: 10.3788/OPE.20172512.3160.
Jin-xian YANG, Chuang YANG. MEMS gyro signal reconstruction via layerwise and adaptive MP[J]. Optics and precision engineering, 2017, 25(12): 3160-3168. DOI: 10.3788/OPE.20172512.3160.
对含噪微机械系统(MEMS)陀螺信号进行小波分解重构时,真实信号对应的小波系数很难选取,故本文提出一种分层自适应匹配追踪算法(LAMP)来解决上述问题。建立了含噪MEMS陀螺信号中信号小波系数稀疏提取架构,将信号小波系数提取问题转化为含噪信号中信号小波系数稀疏性的恢复问题。比较已有稀疏重构算法,采用一种新的LAMP算法,在各种可能的小波系数组合中挑选出分解系数最为稀疏的一组,以此消除信号中的噪声小波系数,进而重构MEMS陀螺信号。实验表明:提出的LAMP算法的稀疏重构效果优于其他迭代贪婪重构算法;基于LAMP的信号稀疏小波重构方法,可以有效去除MEMS陀螺信号的大量噪声;去噪前后,纯MEMS陀螺数据解算的方位角平均累积误差由10.060 2(°)/h减小到5.034 6(°)/h,优于传统小波阈值重构法平均累积误差8.596 8(°)/h,显示了较好的应用效果。
When noisy signals from a Micro-electromechanical System(MEMS) gyro are reconstructed by wavelet decomposes
it is difficult to choose the wavelet coefficients corresponding to the real signals. Therefore
a kind of Layerwise and Adaptive Matching Pursuit-based(LAMP-based)algorithm was proposed to solve the problem mentioned above. A sparse extraction construction of wavelet coefficients from the real MEMS gyro signal was established by recovering the sparsity of the wavelet coefficients of the noisy gyro signal. Then
the new LAMP algorithm was designed to pick out the most sparse wavelet coefficients among all wavelet coefficients of the noisy MEMS gyro signal
and the chosen wavelet coefficients were utilized to reconstruct the real MEMS gyro signal. Substantial experiment results indicate that the proposed LAMP algorithm is superior to other iterative greedy reconstruction algorithms. It effectively removes substantial MEMS gyro noise
and corresponding azimuth average error reduces from 10.060 2 (°)/h (before LAMP reconstruction) to 5.034 6 (°)/h (after LAMP reconstruction)
which shows its denoising performance to be better than that of the traditional wavelet threshold reconstruction method with an azimuth average error of 8.596 8 (°)/h(after wavelet threshold reconstruction). It concludes that the proposed LAMP-based signal reconstruction method for MEMS gyro has good application prospect.
张百强, 储海荣, 孙婷婷, 等.应用RB无迹卡尔曼滤波组合导航提高GPS重获信号后的导航精度[J].光学 精密工程, 2016, 24(4):835-843.
ZHANG B Q, CHU H R, SUN T T, et al.. Precision improvement methodology for INS/GPS after GPS outage using RB-UKF[J]. Opt. Precision Eng., 2016, 24(4):835-843. (in Chinese)
HEMERLY E M. MEMS IMU stochastic error modelling[J]. Systems Science & Control Engineering, 2017, 5(1):1-8.
刘晓光, 胡静涛, 高雷, 等.基于改进小波阈值的微机械陀螺去噪方法[J].中国惯性技术学报, 2014, 22(2):233-236.
LIU X G, HU J T, GAO L, et al.. Micro mechanical gyro denoising method based on improved wavelet threshold[J]. Journal of Chinese Inertial Technology, 2014, 22(2):233-236. (in Chinese)
田晓春, 陈家斌, 韩勇强, 等.一种优化的小波阈值去噪方法在行人导航系统中的应用[J].中国惯性技术学报, 2015, 23(4):442-445.
TIAN X CH, CHEN J B, HAN Y Q, et al.. Application of optimized wavelet threshold de-nosing method in pedestrian navigation system[J]. Journal of Chinese Inertial Technology, 2015, 23(4):442-445. (in Chinese)
ALAM M, ROHAC J. Adaptive data filtering of inertial sensors with variable bandwidth[J]. Sensors, 2015, 15(2):3282-3298.
吴迪, 王奎民, 赵玉新, 等.分段正则化正交匹配追踪算法[J].光学 精密工程, 2014, 22(5):1395-1402.
WU D, WANG K M, ZHAO Y X, et al.. Stagewise regularized orthogonal matching pursuit algorithm[J]. Opt. Precision Eng., 2014, 22(5):1395-1402. (in Chinese)
周渝人, 耿爱辉, 张强, 等.基于压缩感知的红外与可见光图像融合[J].光学 精密工程, 2015, 23(3):855-863.
ZHOU Y R, GENG A H, ZHANG Q, et al.. Fusion of infrared and visible images based on compressive sensing[J]. Opt. Precision Eng., 2015, 23(3):855-863. (in Chinese)
XU SH P, YANG X H, JIANG SH L. A fast nonlocally centralized sparse representation algorithm for image denoising[J]. Signal Processing, 2017, 131:99-112.
赵瑞珍, 刘晓宇, LI C C, 等.基于稀疏表示的小波去噪[J].中国科学:信息科学, 2010, 40(1):33-40.
ZHAO R ZH, LIU X Y, LI C C, et al.. Wavelet denoising via sparse representation[J]. Science in China Series F:Information Sciences, 2009, 52(8):1371-1377.
COMERFORD L, JENSEN H A, MAYORGA F, et al.. Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data[J]. Computers & Structures, 2017, 182:26-40.
DO T T, GAN L, NGUYEN N, et al .. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Proceedings of the 42nd Asilomar Conference on Signals , Systems and Computers , IEEE , 2008:581-587. http://www.researchgate.net/publication/224505496_Sparsity_adaptive_matching_pursuit_algorithm_for_practical_compressed_sensing
SAUCIER A, AUDET C. Construction of sparse signal representations with adaptive multiscale orthogonal bases[J]. Signal Processing, 2012, 92(6):1446-1457.
BI X, CHEN X D, ZHANG Y, et al .. Variable step size stagewise adaptive matching pursuit algorithm for image compressed sensing[C]. Proceedings of 2013 IEEE International Conference on Signal Processing , Communication and Computing ( ICSPCC ), IEEE , 2013:1-4. http://dx.doi.org/10.1109/ICSPCC.2013.6663917
HUANG W Q, ZHAO J L, LV ZH Q, et al .. Sparsity and Step-size adaptive regularized matching pursuit algorithm for compressed sensing[C]. Proceedings of the 7th Joint International Information Technology and Artificial Intelligence Conference ( ITAIC ), IEEE , 2014:536-540. https://www.researchgate.net/publication/301408107_Sparsity_and_Step-size_adaptive_regularized_matching_pursuit_algorithm_for_compressed_sensing
ZHANG R Y, ZHAO H L. An improved sparsity estimation variable step-size matching pursuit algorithm[J]. Journal of Southeast University (English Edition), 2016, 32(2):164-169.
LOPES M E. Estimating unknown sparsity in compressed sensing[C]. Proceedings of the 30th International Conference on Machine Learning ( ICML ), PMLR :2012:217-225. http://dl.acm.org/citation.cfm?id=3042961
DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249.
0
浏览量
364
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构