浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 吉林大学 仪器科学与电气工程学院,吉林 长春,130026
收稿日期:2017-05-28,
修回日期:2017-06-11,
纸质出版日期:2017-11-25
移动端阅览
刘玉娟, 崔继承, 张刘等. 凹面光栅同心光谱仪的物像面转移式设计与对比分析[J]. 光学精密工程, 2017,25(10s): 1-6
LIU Yu-juan, CUI Ji-cheng, ZHANG Liu etc. Design and analysis of concave grating concentric spectrometer with shifting object and image plane[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 1-6
刘玉娟, 崔继承, 张刘等. 凹面光栅同心光谱仪的物像面转移式设计与对比分析[J]. 光学精密工程, 2017,25(10s): 1-6 DOI: 10.3788/OPE.20172513.0001.
LIU Yu-juan, CUI Ji-cheng, ZHANG Liu etc. Design and analysis of concave grating concentric spectrometer with shifting object and image plane[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 1-6 DOI: 10.3788/OPE.20172513.0001.
凹面光栅同心光谱仪中同心系统的物面和像面位于同一平面,且物像垂轴距离仅有几毫米,限制了实际系统中焦平面探测器和前置成像系统的摆放。为了解决此问题,在光学系统中引入平面反射镜将光线偏折,实现物面和像面的分离。根据平面反射镜偏转光线不同,设计了两种改进式凹面光栅同心光谱仪:物面转移式与像面转移式,利用仿真软件对这两种改进的光学系统设计进行了对比分析。结果表明:两种设计均能实现物面与像面的分离,分离距离均大于16 mm,且像差均得到较好的控制,在400~800 nm内全波段波像差曲线几乎为0,满足实际应用中低像差、高成像质量、物像面分离的要求,有效解决了器件摆放问题。
The object plane and image plane of concave grating concentric spectrometers are in the same plane
and the vertical axis distance between object and image is only a few millimeters
which limits the arrangement of focal plane detectors and front lens. In order to solve this problem
a plane mirror was introduced into the optical system to deflect the light
and the separation of the object surface and the image surface was realized. According to the deflection light
two improved concave grating concentric spectrometers with shift object plane or shift image plane were designed and then simulated by simulation software. The simulation results show that the two spectrometers can achieve the separation of object surface and image plane
the separation distance is greater than 16 mm
and the aberrations are also well controlled
within the 400-800 nm the aberration curve is almost zero. Those results meet the application requirements of low aberration
high image quality
image plane separation
which can effectively solve the problem of device arrangement.
LOBB D R. Imaging spectrometers using concentric optics[J]. SPIE, 1997, 3118:339-347.
BAUDIN G, BESSUDO R, BEZY J L, et al.. Medium resolution imaging spectrometer (MERIS), in Future European and Japanese Remote-Sensing Sensors and Programs[J]. Proc. Soc. Photo-Opt. Instrum. Eng., 1991,1490:102-113.
MOUROULIS P, GREEN R O, WILSON D W.Optical design of a coastal ocean imaging spectrometer[J]. Opt. Express, 2008,16:9087-9095.
ROBERT O, GREEN, MICHAEL L, et al.. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer(AVIRIS)[J]. Remote Sens. Environ., 1998,65:227-248.
FRANCESCO D, JENS N, BENJAMIN K, et al..Improving radiometry of imaging spectrometers by using programmable spectral regions of interest[J]. Photogrammetry and Remote Sensing, 2009,64:631-639.
PAINTER T H, ROBERTS D A, GREEN R O, et al..The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data[J]. Remote Sensing of Environment, 1998,65:320-332.
MOUROULIS P.Optical design of a coastal ocean imaging spectrometer[J]. Opt. Express, 2008,16:9087-9095.
MOUROULIS P,THOMADS D A.Spectral response evaluation and computation for pushbroom imaging spectrometers[J]. SPIE,2007, 66670G:1-12.
MOUROULI P. Grating fabrication through X-ray lithography[J]. SPIE,2003, 5173:108-114.
ALEXANDER F GOETZ H.Three decades of hyperspectral remote sensing of the earth:A personal view, remote sensing of environment[J].2009,113:5-16.
DYSON J.Unit magnification optical system without Seidel aberrations[J]. J. Opt.Soc. Am., 1959, 49:713-716.
NAMIOKA T.Theory of the concave grating I[J]. J. Opt. Soc. Am., 1959, 49(5):446-460.
MERTZ L.Concentric spectrographs[J]. Appl. Opt, 1977, 16:3122-3124.
LOBB D R. Theory of concentric designs for grating spectrometers[J]. Appl. Opt., 1994, 33, 2648-2658.
LOBB D R.Imaging spectrometers using concentric optics[J]. SPIE, 1997, 3118, 339-347.
FISHER J, ANTONIADES J A, ROLLINS C, et al..Hyperspectral imaging sensor for the coastal environment[J]. SPIE, 1998, 3482:179-186.
MOUROULIS P, GREEN R O, CHRIEN T G.Design of pushbroom imaging spectrometer for optimum recovery of spectroscopic and spatial information[J]. Applied Optics, 2000,13:39-44.
FRANCESCO D, JENS N, BENJAMIN K, et al.. Improving radiometry of imaging spectrometers by using programmable spectral regions of interest[J]. Photogrammetry and Remote Sensing, 2009,64:631-639.
吴国安. 光谱仪器设计[M]. 北京:科学出版社,1978. WU G A. Design of Spectrometer[M].Beijing:Science Press,1978. (in Chinese)
LIU Y G,WANG C M,LIN J. Optimal designing of light folding imaging spectrometer based on dyson concentric system[J]. Spectroscopy and Spectral Analysis,2016, 32(7):2286-2290.
0
浏览量
177
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构