浏览全部资源
扫码关注微信
1. 中国建筑材料科学研究总院 北京,100024
2. 中国科学院 理化技术研究所 激光物理与技术研究中心 北京,100190
收稿日期:2017-05-06,
修回日期:2017-06-11,
纸质出版日期:2017-11-25
移动端阅览
王彩丽, 谢仕永, 杜仕峰等. 激光介质长度对Tm:YAG激光器波长调谐的理论分析与数值模拟[J]. 光学精密工程, 2017,25(10s): 20-25
WANG Cai-li, XIE Shi-yong, DU Shi-feng etc. Theoretical analysis and numerical simulation for wavelength switchable Tm:YAG laser modulated by Tm:YAG crystal length[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 20-25
王彩丽, 谢仕永, 杜仕峰等. 激光介质长度对Tm:YAG激光器波长调谐的理论分析与数值模拟[J]. 光学精密工程, 2017,25(10s): 20-25 DOI: 10.3788/OPE.20172513.0020.
WANG Cai-li, XIE Shi-yong, DU Shi-feng etc. Theoretical analysis and numerical simulation for wavelength switchable Tm:YAG laser modulated by Tm:YAG crystal length[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 20-25 DOI: 10.3788/OPE.20172513.0020.
从理论和实验两个方面,对比分析激光介质长度和晶体温度对侧面泵浦激光器泵浦阈值的影响,通过增加激光介质长度或改变晶体温度可实现激光输出波长从2.02
μ
m跳变到2.07
μ
m。首次定量计算出侧面泵浦Tm:YAG激光器输出波长发生红移所对应的激光介质长度和晶体温度,如果输出耦合率固定为5%,晶体温度为281 K时,当激光介质长度大于85 mm时,此时具有较小重吸收损耗的2.07
μ
m谱线会优先起振,激光器的波长为2.07
μ
m。实验方面,当激光介质长度为69 mm时,Tm:YAG激光器的输出波长为2.02
μ
m。当激光介质长度为138 mm时,激光器的输出波长为2.07
μ
m,实验结果和理论分析一致。
Based on the analysis of quasi-three-level side pumped Tm:YAG laser system
the dependence of the laser wavelength was studied theoretically and experimentally
which shows central wavelength is switchable between 2.07 and 2.02
μ
m with different Tm:YAG crystal lengths or rod temperatures. The length of the laser medium corresponding to the wavelength red shift was calculated quantitatively. The laser oscillation at 2.02
μ
m with larger stimulated emission sections is suppressed when the crystal length is larger than~85 mm with a 5% output coupling
then an efficient side-diode-pumped rod Tm:YAG laser operating at 2.07
μ
m is realized. The experimental results show that the wavelength of the single-module Tm:YAG laser with Tm:YAG crystal length of 69 mm is located at 2.02
μ
m
while the wavelength of two-modules Tm:YAG laser with the total Tm:YAG crystal length of 138 mm is located at 2.07
μ
m. The experiments confirm the accuracy of the model.
YU J, TRIEU B C, MODIN E A, et al.. 1 J/pulse Q-switched 2μm solid-state laser[J]. Opt. Lett., 2006, 31:462-464.
SUNI P J M, HENDERSON S W. 1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser[J]. Opt. Lett.,1991, 16:817-819.
YOKOZAWA T, HARA H. Laser-diode end-pumped Tm:YAG eye-safe laser[J]. Appl. Opt., 1996, 35:1424-1426.
LAI K S, PHUA P B, WU R F, et al.. 120-W continuous-wave diode-pumped Tm:YAG laser[J]. Opt. Lett., 2000, 25:1591-1593.
SCHELLHORN M, HIRTH A, KIELECK C. Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser[J]. Opt. Lett., 2003, 28:1933-1935.
SATO A, ASAI K, ITABE T. Double-pass-pumped Tm:YAG laser with a simple cavity configuration[J]. Appl. Opt., 1998, 37:6395-6400.
STONEMAN R C, ESTEROWITZ L. Intracavity-pumped 2.09-μm Ho:YAG laser[J]. Opt. Lett., 1992, 17:736-738.
SO S, MACKENZIE J I, SHEPHERD D P, et al.. Intra-cavity side-pumped Ho:YAG laser[J]. Opt. Exp., 2006, 14:10481-10487.
SATO A, ASAI K, ITABE T. Double-pass-pumped Tm:YAG laser with a simple cavity configuration[J]. Appl. Opt., 1998, 37:6395-6400.
BURYYO A, SUGAK D Y, UBIZSKⅡ S B, et al.. The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers[J]. Appl. Phys. B, 2007, 88:433-442.
JU Y L, WANG Q, WU C T, et al.. Lasing characteristics of a single-frequency Tm:YAG laser[J]. Laser Phys., 2009, 19:1216-1219.
HONEA E C, BEACH R J, SUTTON S B, et al.. 115-W Tm:YAG diode-pumped solid-state laser[J]. J. Quantum Electron., 1997,33:1592-1600.
LAI K S, XIE W J, WU R F, et al.. A 150 W 2-micron diode-pumped Tm:YAG laser[J]. In Conference on Advanced Solid-state Lasers,2002, 68, 535-539.
CAO D, PENG Q, DU S, et al.. A 200 W diode-side-pumped CW 2μm Tm:YAG laser with water cooling at 8℃[J]. Appl. Phys. B, 2011, 103:83-88.
STONEMAN R C, ESTEROWITZ L. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers[J]. Opt. Lett.,1990, 15:486-488.
WANG, DU S F, NIU Y X, et al.. Wavelength switchable high-power diode-side-pumped rod Tm:YAG laser around 2μm[J]. Opt. Exp., 2013,21:7156-7161.
WANG C L, NIU Y X, DU S F, et al.. High-power diode-side-pumped rod Tm:YAG laser at 2.07μm[J]. Appl. Opt., 2013, 52:7494-7497.
HENDERSON S W, SUNI P J M, HALE C P, et al.. Coherent laser radar at 2μm using solid-state lasers[J]. IEEE Trans. Geosci. Remote Sensing, 1993,31:4-7.
YAO B Q, CHEN F, ZHANG C H, et al.. Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser[J]. Opt. Lett., 2011, 36:1554-1556.
PETROV V, TANAKA Y, SUZUKI T. Parametric generation of 1-ps pulses between 5 and 11μm with a ZnGeP2 Crystal[J]. J. Quantum Electron., 2002, 33:1749-1755.
NIEUWENHUIS, LEE C J, van DER SLOT P J M, et al.. Mid-infrared ZGP optical parametric oscillator directly pumped by a lamp-pumped, Q-switched Cr,Tm,Ho:YAG laser[J]. SPIE, 2007, 455:645518-2.
ESSER M J D, PREUSSLER D, BERNHARDI E H, et al.. Diode-end-pumped Tm:GdVO4 laser operating at 1818 and 1915 nm[J]. Appl. Phys. B, 2009, 97:351-356.
NIU Y X, WANG C L, LIU W W, et al.. Theoretical model predictions and experimental results for a wavelength switchable Tm:YAG laser[J]. Appl. Opt., 2014, 53:4359-4362.
TAIRA T, TULLOCH W M, BYER R L. Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers[J]. Appl. Opt., 1997,36:1867-1874.
FAN T Y, BYER R L. Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser[J]. J. Quantum Electron., 1987, 23:605-612.
满达,牛燕雄,王彩丽. Tm:YAG激光器的波长可调谐理论和实验研究[J]. 光学学报,2015, 35(1):218-224. MAN D, NIU Y X, WANG C L. Theoretical model and experimental study for wavelength tunable Tm:YAG laser[J]. Acta Optica Sinica,2015,35(1):218-224. (in Chinese)
0
浏览量
549
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构