浏览全部资源
扫码关注微信
重庆理工大学 光纤传感与光电检测重庆市重点实验室 重庆市现代光电检测技术与仪器重点实验室 重庆,400054
收稿日期:2017-05-27,
修回日期:2017-07-11,
纸质出版日期:2017-11-25
移动端阅览
陈明, 汪正坤, 辛鑫等. 基于高光谱的微藻生物膜生长特性研究[J]. 光学精密工程, 2017,25(10s): 39-45
CHEN Ming, WANG Zheng-kun, XIN Xin etc. Study on growth characteristics of microalgae biofilm based on hyperspectral imaging[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 39-45
陈明, 汪正坤, 辛鑫等. 基于高光谱的微藻生物膜生长特性研究[J]. 光学精密工程, 2017,25(10s): 39-45 DOI: 10.3788/OPE.20172513.0039.
CHEN Ming, WANG Zheng-kun, XIN Xin etc. Study on growth characteristics of microalgae biofilm based on hyperspectral imaging[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 39-45 DOI: 10.3788/OPE.20172513.0039.
为了获得微藻生物膜培养的最佳环境条件,首先利用高光谱成像技术在线实时监测了不同光强、pH及温度下的微藻生物膜生长光谱信息。提取了生物膜光谱特征变量,计算特征变量与生物膜干重之间的相关系数,采用二次函数对相关特征变量进行归一化处理,然后利用指数函数进行权重分配组合,建立了生物膜生长过程预测模型。最后利用该模型对生物膜生长过程进行了预测。实验及模拟结果表明:小球藻生物膜的最佳培养温度为28℃、光照强度为3 500 lx、PH为8;在最优化培养条件下,小球藻生物膜在培养到第七天时进入稳定生长期,随后生物膜不再生长。该方法可以快速、无损地监测生物膜高光谱的生长特性。
To obtain the optimal environmental conditions for microalgae biofilm culture
the spectral information of the biofilms under different culture conditions including light intensity
pH value and temperature
were monitored online and in real time
using hyperspectral imaging technology. The characteristic variables of biofilm spectral characteristics were extracted
and the correlation coefficient between the characteristic variables and dry weight of the biofilms was calculated. Furthermore
the characteristic variables of the biofilms were normalized based on the quadratic function and were combined weight by using the exponential function
thus establishing the prediction model of biofilm growth process. Then the biofilm growth process was predicted by the established model. The results show that the optimal culture conditions of the biofilm were the temperature of 28℃
light intensity of 3 500 lx
and PH of 8; the mature biofilm
which will no longer grow
can be obtained under the optimized culture conditions after 7 days in culture. The growth characteristics of biofilm can be quickly and non-destructively monitored by the hyperspectral imaging method.
熊伟, 黄云, 付乾, 等. 微藻生物膜营养环境对微藻生长和油脂积累影响[J]. 中国环境科学, 2016, 36(8):2463-2469. XIONG W, HUANG Y, FU Q, et al.. Effect of nutrient solution content of biofilm on algal growth and lipid accumulation[J]. China Environmental Science, 2016, 36(8):2463-2469. (in Chinese)
HUANG Y, XIONG W, LIAO Q, et al.. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide[J]. Bioresource Technology, 2016, 222:367-373.
BLANKEN W, SCHAAP S, THEOBALD S, et al.. Optimizing carbon dioxide utilization for microalgae biofilm cultivation[J]. Biotechnology and Bioengineering, 2017, 114(4):769-776.
SALAM K A, VELASQUEZ-ORTA S B, HARVEY A P. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review[J]. Renewable and Sustainable Energy Reviews, 2016, 65:1179-1198.
WANG S, ZHU J, DAI L, et al.. A novel process on lipid extraction from microalgae for biodiesel production[J]. Energy, 2016, 115:963-968.
BATISTA G, SUREK G A S, BENINCÁ C, et al.. Cyclic pressurization assisted extraction of lipids from microalgae for biodiesel production:non-equilibrium and equilibrium data[J]. Fuel, 2016, 163:133-138.
BOELEE N C, JANSSEN M, TEMMINK H, et al.. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing[J]. Applied Biochemistry and Biotechnology, 2014, 172(1):405-422.
MOAZAMI N, ASHORI A, RANJBAR R, et al.. Large-scale biodiesel production using microalgae biomass of nannochloropsis[J]. Biomass and Bioenergy, 2012, 39:449-453.
胡章喜, 徐宁, 段舜山. 不同氮源对4种海洋微藻生长的影响[J]. 生态环境学报, 2010, 19(10):2452-2457. HU ZH X, XU N, DUAN SH SH. Effects of nitrogen sources on the growth of Heterosigma akashiw, Karenia sp., Phaeocystis globosa and Chaetoceros sp.[J]. Ecology and Environmental Sciences, 2010, 19(10):2452-2457. (in Chinese)
刘洋, 钟年丙, 陈明, 等. 准确测量微藻生物量的塑料光纤倏逝波传感器[J]. 光学精密工程, 23(10z):151-158. LIU Y, ZHONG N B, CHEN M, et al.. Plastic optical fiber evanescent wave sensor for accurate measurement of microalgae biomass[J]. Opt. Precision Eng., 2015, 23(10z):151-158. (in Chinese)
ZHONG N B, LIAO Q, ZHU X, et al.. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor[J]. Analytical Chemistry, 2014, 86(8):3994-4001.
ZHONG N B, ZHAO M F, LI Y S. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring[J]. Biomedical Optics Express, 2016, 7(2):335-351.
李湘眷, 王彩玲, 李宇, 等. 窗口融合特征对比度的光学遥感目标检测[J]. 光学精密工程, 2016, 24(8):2067-2077. LI X J, WANG C L, LI Y, et al. Optical remote sensing object detection based on fused feature contrast of subwindows[J]. Chin. Opt. Precision Eng., 2016, 24(8):2067-2077. (in Chinese)
HOLZINGER A, ALLEN M C, DEHEYN D D. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats[J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 162:412-420.
SHAO Y, JIANG L, ZHOU H, et al.. Identification of pesticide varieties by testing microalgae using visible/near infrared hyperspectral imaging technology[J]. Scientific Reports, 2016, 6:24221.
谭倩, 赵永超, 童庆禧,等. 植被光谱维特征提取模型[J]. 遥感信息, 2001(1):14-18. TAN Q, ZHAO Y CH, TONG Q X, et al.. Vegetation spectral size extraction model[J], Remote Sensing Information, 2001(1):14-18. (in Chinese)
0
浏览量
575
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构