浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2017-05-10,
修回日期:2017-06-13,
纸质出版日期:2017-11-25
移动端阅览
安其昌, 张景旭, 杨飞等. 巨型科学可控反射镜的质心检测[J]. 光学精密工程, 2017,25(10s): 46-51
AN Qi-chang, ZHANG Jing-xu, YANG fei etc. Center of gravity testing for giant steerable science mirror[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 46-51
安其昌, 张景旭, 杨飞等. 巨型科学可控反射镜的质心检测[J]. 光学精密工程, 2017,25(10s): 46-51 DOI: 10.3788/OPE.20172513.0046.
AN Qi-chang, ZHANG Jing-xu, YANG fei etc. Center of gravity testing for giant steerable science mirror[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 46-51 DOI: 10.3788/OPE.20172513.0046.
三十米望远镜三镜巨型科学可控反射镜(GSSM)的质量分布对望远镜整体的控制精度影响十分巨大。为实现三十米望远镜整体运动控制,需要在在不倾倒系统的前提下实现质心测量。首先,针对GSSM质心检测方法进行了理论研究,结合激光跟踪仪与力传感器提出了GSSM质心检测方法。为了验证该方法的可行性,对三十米望远镜三镜的四分之一缩比模型(GSSMP)进行了质心检测实验。最后对所测得的结果进行了误差分析。在误差分析中,考虑了由激光跟踪仪所带来的误差与测量仪器所带来的误差,忽略系GSSMP弯沉所带来的误差。根据本文所提出的方法,GSSMP的质量为805.800 kg,其质心位置在三镜坐标系中的坐标为(-7.169 mm,12.900 mm,526 mm)、位置精度为0.501 mm。
The tertiary mirror of Thirty Meter Telescope (TMT) is a Giant Steerable Science Mirror (GSSM)
the center of gravity (CG) of which significantly influences the control accuracy of the telescope. However
the GSSM is so large that the traditional lying down method is not suitable for the CG measurement. To measure the CG of the GSSM at small tipping angles
a method for testing the CG with a laser tracker and load cells was proposed and verified theoretically and experimentally. In the experiment
a 1/4 scale prototype of the TMT was constructed and its CG was located. Furthermore
the error of the measuring result was analyzed considering the laser tracker error and equipment error
whereas the gravity sag of GSSMP was ignored. The mass of GSSMP is 805.800 kg
and the location of CG is (-7.169 mm
12.900 mm
526 mm) with an accuracy of 0.501 mm.
邓赛, 景奉水, 梁自泽,等. FAST馈源支撑系统位姿分配方法研究[J]. 光学精密工程, 2017,25(2):375-384. DENG S, JING F SH, LING Z Z, et al.. Research on pose distribution algorithm of FAST feed support system[J]. Opt. Precision Eng., 2017,25(2):375-384. (in Chinese)
KEAS P, GUERRA J, BREWSTER R, et al.. SOFIA telescope modal survey test and test-model correlation[J]. SPIE,2010, 7738:77380K.
邓永停, 李洪文, 王建立,等. 2 m望远镜主轴交流伺服控制系统设计[J]. 光学精密工程, 2017,25(1):163-171. DENG Y T, LI H W, WANG J L, et al.. Main axes AC servo control system for 2 m telescope[J]. Opt. Precision Eng., 2017,25(1):163-171. (in Chinese)
LIETO D, SAHLMANN N, WALLANDER J, et al.. An approach to stabilizing large telescopes for stellar interferometry[J]. Proc. ICALEPCS, 2007.
邓永停, 李洪文, 王建立,等. 基于自适应滑模控制的大型望远镜低速控制[J]. 中国光学, 2016,9(6):713-720. DENG Y T, LI H W, WANG J L, et al.. Large telescope low speed control based on adaptive sliding mode control[J]. Chinese Optics, 2016,9(6):713-720. (in Chinese)
MACMARTIN D G, THOMPSON P, COLAVITA M M, et al.. Dynamic analysis of the active-controlled segm//KAWASHIMA S, WATANABE Y. Center of gravity detection for railway cars[J]. Open Journal of Mechanical Engineering, 2014, 2(1):1-5.
GOLPIRA H, MESSINA A R. A center-of-gravity-based approach to estimate slow power and frequency variations[J]. IEEE Transactions on Power Systems, 2017.Ented Mirror of the Thirty Meter Telescope, IEEE Trans. Control Sys. Tech., 2013, 22:58-68.
周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学, 2017,10(1):25-38. ZHOU CH H, WANG ZH L, HU F. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017,10(1):25-38. (in Chinese)
Berger, James O, DELAMPADY M. Testing precise hypotheses[J]. Statistical Science,1987:317-335.
邓永停, 李洪文, 王建立. 大型望远镜交流伺服控制系统综述[J]. 中国光学, 2015,8(6):895-908. DENG Y T, LI H W, WANG J L. Overview of AC servo control system for the large telescope[J]. Chinese Optics, 2015,8(6):895-908. (in Chinese)
0
浏览量
528
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构