浏览全部资源
扫码关注微信
西安电子科技大学 空间科学与技术,陕西 西安,710118
收稿日期:2017-06-01,
修回日期:2017-06-22,
纸质出版日期:2017-11-25
移动端阅览
刘立新, 孙伟, 汪海潮. 具有低漂移度的激光雷达同步定位和三维建图[J]. 光学精密工程, 2017,25(10s): 52-59
LIU Li-xin, SUN Wei, WANG Hai-chao. Lidar simultaneous localization and mapping with low-drift[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 52-59
刘立新, 孙伟, 汪海潮. 具有低漂移度的激光雷达同步定位和三维建图[J]. 光学精密工程, 2017,25(10s): 52-59 DOI: 10.3788/OPE.20172513.0052.
LIU Li-xin, SUN Wei, WANG Hai-chao. Lidar simultaneous localization and mapping with low-drift[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 52-59 DOI: 10.3788/OPE.20172513.0052.
鉴于传统的2D激光雷达在不借助其他传感器的情况下难以实时绘制精细的三维地图,本文提出以六自由度移动2D激光雷达,通过其在扫描期间感知的点云执行运动估计,构建扫描环境的三维地图。首先,以程序开始时雷达所在位置为世界坐标系的原点,将雷达扫描到的激光点与电机的旋转角度结合,使激光点带有三维坐标信息,并注册到激光雷达坐标系中。使用双边滤波算法对雷达坐标系中的点云进行滤波,然后采用激光雷达测距算法处理点云数据,计算连续两次扫描之间的运动。估算的运动用于雷达自身的姿态变换和矫正点云失真。激光雷达绘图算法进一步处理矫正后的点云并配准到地图上输出三维点云图,同时输出雷达的姿态变换。最后整合两种算法的姿态变换,输出激光雷达在世界坐标系中的位置信息。实验结果表明:该方法可以使用激光雷达原始数据和电机位置信息实时地精确估计激光雷达以六自由度运动的轨迹,同时构建高质量的激光雷达三维点云图。提出的方法具有良好的实时性,室内环境中测试的相对精度约为2%,适用于三维地图的在线重建。
As conventional 2D lidars can't reconstruct three-dimensional map in real time without other sensors
this paper constructed a three-dimensional map from point clouds perceived by a 2D laser lidar scanning in six degrees of freedom. First
the location of radar was taken as the origin of world coordinate system at the begging of the program. The laser spot scanned by the radar was combined with the rotation angle of the motor so that the laser point has three-dimensional coordinate information
which was registrated into the radar coordinate system. The bilateral filtering algorithm was adopted to filter the point cloud
which was then processed by lidar ranging algorithms to calculate the motion of the lidar between two successive scans. The estimated motion was used to correct the distortion of the point cloud. The drawing algorithm further processes the output of the ranging algorithm at a lower frequency
fine-graining the corrected cloud to the map. Finally
the two algorithms were integrated to map and post the radar posture transformation in real time
thus outputting the position of lidar in world coordinate system. Experimental results show that the method can accurately estimate the trajectory of the lidar with six degrees of freedom in real time based on the laser radar original data and the motor position information
and meanwhile construct high-quality 3D point cloud image. The proposed method exhibits good real-time performance
and the relative precision of the indoor test is approximately 2%.
NUCHTER A, LINGEMANN K,HERTZBERG J, et al.. 6D SLAM-3D mapping outdoor environments[J]. Journal of Field Robotics, 2007,16(4):337-340.
THRUN S, BURGARD W, FOX D. Probabilistic robotics[J]. Cambridge, MA:The MIT Press, 2005.
BOSSE M, ZLOT R, FLICK P. Zebedee:design of a spring-mounted 3-D range sensor with application to mobile mapping[J]. IEEE Transactions on Robotics, 201228(5):1104-1119.
BOSSE M, ZLOT R, FLICK P. Continuous 3D scan-matching with aspinning 2D laser[C]. In IEEE International Conference on Robotics and Automation, Kobe, Japan:2009.
吴禄慎, 史皓良, 陈华伟. 基于特征信息分类的三维点数据去噪[J]. 光学精密工程, 2016, 24(6):1465-1473. WU L SH, SHI H L, CHEN H W. Denoising of three-dimensional point data based on classification of feature information[J]. Opt.Precision Eng., 2016, 24(6):1465-1473.(in Chinese)
张雨禾,耿国华,魏潇然. 散乱点云谷脊特征提取[J]. 光学精密工程,2015,23(1):310-318. ZHANG Y H, GENG G H, WEI X R. Valley-ridge feature extraction from point clouds[J]. Opt. Precision Eng.,2015,23(1):310-318.(in Chinese)
LI Y, OLSON E. Structure tensors for general purpose LIDAR feature extraction[C]. In IEEE International Conference on Robotics and Automation, Shanghai, China, 2011:9-13.
DEBERG M, VANKREVELD M, OVERMARS M, et al.. Computation geometry:Algorithms and applications[J]. Berlin:Springer, 2008.
MURRAY R, SASTRY S. A mathematical introduction to robotic manipulaton[J]. Boca Raton:CRC Press, 1994.
HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. New York:Cambridge University Press,2004.
王健博, 朱明. 基于字典描述向量的实时图像配准[J]. 光学精密工程, 2014, 22(6):1613-1621. WANG J B, ZHU M. Real time image registration based on dictionary feature descriptor[J]. Opt.Pprecision Eng., 2014, 22(6):1613-1621.(in Chinese)
QUIGLEY M, CONLEY K, GERKEY B. SolarROS:An open-source robot operating system[C]. ICRA Workshop on Open Source Software, Kobe, Japan, 2009.
0
浏览量
338
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构