浏览全部资源
扫码关注微信
1. 滁州职业技术学院 信息工程系,安徽 滁州,239000
2. 江苏大学 京江学院,江苏 镇江,212013
3. 江苏大学 电气信息工程学院,江苏 镇江,212013
收稿日期:2017-05-28,
修回日期:2017-07-11,
纸质出版日期:2017-11-25
移动端阅览
武斌, 陈博文, 武小红等. 茶叶傅里叶红外光谱的模糊聚类系统设计[J]. 光学精密工程, 2017,25(10s): 81-86
WU Bin, CHEN Bo-wen, WU Xiao-hong etc. Design of fuzzy clustering system for FTIR spectroscopy of tea[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 81-86
武斌, 陈博文, 武小红等. 茶叶傅里叶红外光谱的模糊聚类系统设计[J]. 光学精密工程, 2017,25(10s): 81-86 DOI: 10.3788/OPE.20172513.0081.
WU Bin, CHEN Bo-wen, WU Xiao-hong etc. Design of fuzzy clustering system for FTIR spectroscopy of tea[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 81-86 DOI: 10.3788/OPE.20172513.0081.
为了实现茶叶品种的分类,利用傅里叶红外光谱技术和模糊聚类建立了茶叶傅里叶红外光谱的模糊聚类系统。该系统采用模糊C-均值聚类算法(FCM),可能性C-均值聚类算法(PCM)以及可能性模糊C-均值聚类算法(PFCM)进行茶叶傅里叶红外光谱的模糊聚类研究。首先,采集不同品种茶叶的傅里叶红外光谱。接着,茶叶红外光谱数据进行多元散射校正(MSC)预处理。然后,用主成分分析(PCA)和线性判别分析(LDA)对数据进行降维。最后,使用聚类算法对茶叶数据进行聚类分析处理。实验结果表明:随着权重值
m
的不断增加,FCM算法以及PFCM算法的准确率明显提升,而PCM没有产生明显的改变,聚类准确率始终维持在75.76%。利用傅里叶红外光谱技术,结合MSC,PCA,LDA,FCM或PFCM可设计茶叶品种鉴别的模糊聚类系统,该系统检测速度快且准确率高。
In order to classify tea varieties
a fuzzy clustering system was established using Fourier transform infrared spectroscopy (FTIR) technology and its fuzzy clustering algorithms such as fuzzy C-means clustering algorithm (FCM)
possibilistic C-means clustering (PCM) and possibilistic fuzzy C-means clustering(PFCM) were investigated in clustering FTIR spectra of tea. Firstly
FTIR spectra of different varieties of tea samples were collected. Secondly
multiplicative scatter correction (MSC) was applied to preprocess the spectra. Thirdly
dimensionality of FTIR spectra was reduced by Principal Component Analysis (PCA) and linear discriminant analysis (LDA). Finally
the spectral data of tea samples were analyzed by fuzzy clustering algorithms. Experimental results indicate that as the weight value
m
increases
the clustering accuracies of FCM and PFCM clustering algorithms increases remarkably while that of PCM has no obvious change with its accuracy remaining at 75.76% in the whole process. A fuzzy clustering system can be designed to classify tea varieties by FTIR technology coupled with MSC
PCA
LDA
FCM or PFCM with high detection speed and accuracy.
何芳,王榕,于强,等. 加权空谱局部保持投影的高光谱图像特征提取[J]. 光学精密工程,2017,25(1):263-273. HE F, WANG R, YU Q, et al.. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection (WSSLPP)[J]. Opt. Precision Eng., 2017,25(1):263-273. (in Chinese)
李玉,徐艳,赵雪梅,等. 利用高斯混合模型的多光谱图像模糊聚类分割[J]. 光学精密工程,2017,25(2):509-518. LI Y, XU Y, ZHAO X M, et al.. Multispectral image segmentation by fuzzy clustering algorithm used gaussian mixture model[J]. Opt. Precision Eng., 2017,25(2):509-518. (in Chinese)
刘燕德,靳昙昙,王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学精密工程,2015,23(9):2490-2496. LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Opt. Precision Eng., 2015,23(9):2490-2496.(in Chinese)
WU X H, WU B, SUN J, et al.. Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis[J]. International Journal of Food Properties, 2016, 19(5):1016-1028.
李晓丽,张裕莹,何勇. 基于中红外光谱技术检测茶叶中非法添加滑石粉的研究[J]. 光谱学与光谱分析,2017,37(4):1081-1085. LI X L, ZHANG Y Y, HE Y. Study on detection of talcum powder in green tea based on Fourier transform infrared (FTIR) transmission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1081-1085.(in Chinese)
ZHUANG X G, WANG L L, CHEN Q, et al.. Identification of green tea origins by near-infrared (NIR) spectroscopy and different regression tools[J]. Science China-Technological Sciences, 2017, 60(1):84-90. (in Chinese)
武斌,崔艳海,武小红,等. 一种广义噪声聚类的红外光谱茶叶品种鉴别研究[J]. 光谱学与光谱分析,2016, 36(7):2094-2097. WU B CUI Y H, WU X H, et al.. Discrimination of tea varieties by using infrared spectroscopy with a novel generalized noise clustering[J]. Spectroscopy and Spectral Analysis, 2016, 36(7):2094-2097.(in Chinese)
SHI W M, LIU Y, KONG W et al.. Tea classification by near infrared spectroscopy with projection discriminant analysis and gene expression programming[J]. Analytical Letters, 2015, 48(18):2833-2842.
ZHANG Y, DONG Y, XIANG BR et al.. Feasibility research on rapid detection of prochloraz in green tea soft drink by near-infrared spectroscopy[J]. Food Analytical methods,2015,8(2):343-351.
ZHAO Y M, ZHANG M M. Research on matching method for case retrieval process in CBR based on FCM[J]. Procedia Engineering, 2017, 174:267-274.
TUDU B, GHOSH S, BAG A K. Incremental FCM technique for black tea quality evaluation using an electronic nose[J]. Fuzzy Information and Engineering, 2015, 7(3):275-289.
BIJU V G, MYTHILI P. Fuzzy clustering algorithms for cDNA microarray image spots segmentation[J]. Procedia Computer Science, 2015, 46:417-424.
KRISHNAPURAM R, KELLER J. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2):98-110.
PAL N R, PAL K, BEZDEK J C. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4):517-530.
KRISHNAPURAM R, KELLER J. The possibilistic c-means algorithm:insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3):385-393.
0
浏览量
487
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构