浏览全部资源
扫码关注微信
1. 天津工业大学 电工电能新技术天津市重点实验室 天津,300387
2. 天津职业技术师范大学 机械工程学院 天津,300222
3. 伍伦贡大学 计算机、电气工程与通信工程学院,澳大利亚,2500
收稿日期:2017-04-28,
修回日期:2017-06-19,
纸质出版日期:2017-11-25
移动端阅览
宋丽梅, 魏泽, 杨燕罡等. 物体表面非接触式高精度瑕疵检测与三维重建[J]. 光学精密工程, 2017,25(10s): 87-94
SONG Li-mei, WEI Ze, YANG Yan-gang etc. Non-contact high-precision defect detection and 3D reconstruction of object surface[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 87-94
宋丽梅, 魏泽, 杨燕罡等. 物体表面非接触式高精度瑕疵检测与三维重建[J]. 光学精密工程, 2017,25(10s): 87-94 DOI: 10.3788/OPE.20172513.0087.
SONG Li-mei, WEI Ze, YANG Yan-gang etc. Non-contact high-precision defect detection and 3D reconstruction of object surface[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 87-94 DOI: 10.3788/OPE.20172513.0087.
针对光学器件表面非接触、高精度的检测要求,利用光谱共焦原理搭建一套几何精密测量系统,实现显微镜镜头等光学器件表面的瑕疵检测与三维重建。首先,介绍了光谱共焦位移传感器的测量原理。然后结合高精度位移平台搭建了一套物体表面三维扫描系统,分析系统的结构和原理,对采样率造成的光谱共焦位移传感器读数不精确问题采用一种基于二分法的自适应方法控制系统采样率,并通过对同一标准量块的重复测量,分析系统的整体测量误差。最后,对测得的点云数据进行三维重建,得到待测显微镜镜头的三维曲面模型。实验结果表明,该方法实现了对透明曲面的微米级测量,并在曲面梯度变化较大的边缘部分仍有较好的测量结果,测量最大误差为0.624
μ
m,平均误差为0.167
μ
m,测量不确定度为0.633
μ
m。实现了显微镜镜头表面的高精度测量,对镜头表面存在的微小瑕疵可以实现形貌和大小的分析,能够得到待测镜头表面的精准三维模型。
Aimed at the requirement of non-contact and high-precision detection on the surface of optical devices
a set of geometric precision measurement system was constructed by using the principle of spectral confocal to realize flaw detection and 3D reconstruction on the surface of optical devices such as microscope lens and so on.A set of 3D scanning system of object surface was constructed combined with high-precision displacement platform to analyze structure and principle of system after introducing the measurement principle of spectral confocal displacement sensor. A self-adaptive method based on dichotomy was adopted to control sampling rate of system for the problem of inaccurate reading of spectral confocal displacement sensor caused by sampling rate
and overall measurement error of system was analyzed by repeated measurement of the same standard measured mass. Finally
high-precision measurement on the surface of microscope lens was realized. Experimental result shows that the method realizes micro-grade measurement of transparent surfaces
and still has better measurement result in the edges with larger surface gradient change. Maximum error of measurement is 0.624
μ
m
average error is 0.167
μ
m and uncertainty of measurement is 0.633
μ
m.Analysis of morphology and size can be realized for micro defects existing on the surface of lens and accurate 3D model on the surface of lens to be detected can be obtained.
李兵,孙彬,陈磊,等. 激光位移传感器在自由曲面测量中的应用[J]. 光学精密工程,2015,23(07):1939-1947. LI B, SUN B, CHEN L, et al..Application of laser displacement sensor to free-form surface measurement[J]. Opt. Precision Eng., 2015, 23(07):1939-1947.
毕超,房建国,刘京亮,等. 基于球形目标的激光位移传感器光束方向标定[J]. 光学精密工程,2015,23(03):678-685. BI CH, FANG J G, LIU J L, et al.. Calibration of beam direction of laser displacement sensor based on spherical target[J]. Opt. Precision Eng., 2015, 23(03):678-685.
葛川,张德福,李朋志,等. 电容式位移传感器的线性度标定与不确定度评定[J]. 光学精密工程,2015,23(09):2546-2552. GE CH, ZHANG D F, LI P ZH, et al.. Linearity calibration and uncertainty evaluation for capacitance displacement sensor[J]. Opt. Precision Eng., 2015, 23(09):2546-2552.
张德福,葛川,李显凌,等. 高精度位移传感器线性度标定方法研究[J]. 仪器仪表学报, 2015,36(05):982-988. ZHANG D F, GE CH, LI X L, et al.. Linearity calibration method of the high-precision displacement sensor[J]. Chinese Journal of Scientific Instrument, 2015, 36(05):982-988.
李红伟,刘淑琴,于文涛,等. 电涡流传感器检测磁悬浮转子轴向位移的方法[J]. 仪器仪表学报,2011,32(07):1441-1448. LI H W, LIU SH Q, YU W T, et al.. Maglev rotor axial displacement detection method using eddy current sensor[J]. Chinese Journal of Scientific Instrument, 2011, 32(07):1441-1448.
BROWNE M A, AKINYEMI O, CROSSLEY F, et al.. Stage-scanned chromatically aberrant confocal microscope for 3-d surface imaging[J]. SPIE, 1992, 1660:532-541.
MUELLER T, JORDAN M, SCHNEIDER T, et al.. Measurement of steep edges and undercuts in confocal microscopy.[J]. Micron, 2016, 84:79.
WANG B, ZOU L, ZHANG S, et al.. Super-resolution confocal microscopy with structured detection[J]. Optics Communications, 2016, 381:277-281.
马小军,高党忠,杨蒙生,等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学精密工程,2011,19(01):17-22. MA X J, GAO D ZH, YANG M SH, et al.. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Opt. Precision Eng., 2011, 19(01):17-22.
蓝河,雷大江,钱林弘,等. 基于光谱共焦位移传感器的非接触式回转误差测量系统[J]. 制造技术与机床,2017,(03):141-145. LAN H, LEI D J, QIAN L H, et al.. A non contact system for measurement of rotating error based on confocal chromatic displacement sensor[J]. Manufacturing Technology & Machine Tool, 2017, (03):141-145.
毕超,刘红光,徐昌语,等. 基于光谱共焦技术的叶尖间隙测量方法研究[J]. 航空精密制造技术,2016,52(02):14-18. BI CH, LIU H G, XU CH Y, et al.. Study on Measuring Method of Tip Clearance Based on Chromatic Confocal Technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(02):14-18.
LYDA W, FLEISCHLE D, HAIST T, et al.. Chromatic confocal spectral interferometry for technical surface characterization[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7432:74320Z-74320Z-9.
朱万彬,曹世豪. 光谱共焦位移传感器测量透明材料厚度的应用[J]. 光机电信息,2011,28(09):50-53. ZHU W B, CAO SH H. Application of Confocal Chromatic Displacement Sensors to Measuring Thickness of Transparent Material[J]. OME Information, 2011, 28(09):50-53.
刘乾,杨维川,袁道成,等. 光谱共焦显微镜的线性色散物镜设计[J]. 光学精密工程,2013,21(10):2473-2479. LIU Q, YANG W CH, YUAN D CH, et al.. Design of linear dispersive objective for chromatic confocal microscope[J]. Opt. Precision Eng., 2013, 21(10):2473-2479.
熊慧,杨雪,周梅,等. 光谱仪动态采样时间特性的研究[J]. 光谱学与光谱分析, 2014,34(04):1130-1134. XIONG H, YANG X, ZHOU M, et al.. Study of Time Characteristics in Spectrometer Dynamic Sampling[J]. Spectroscopy and Spectral Analysis, 2014, 34(04):1130-1134.
0
浏览量
818
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构