浏览全部资源
扫码关注微信
大连海事大学 轮机工程学院,辽宁 大连,116026
收稿日期:2017-05-31,
修回日期:2017-06-15,
纸质出版日期:2017-11-25
移动端阅览
吴瑜, 张洪朋,. 电感式油液检测芯片输出信号的提高[J]. 光学精密工程, 2017,25(10s): 130-134
WU Yu, ZHANG Hong-peng,. Improvement of output characteristic of oil detection chip[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 130-134
吴瑜, 张洪朋,. 电感式油液检测芯片输出信号的提高[J]. 光学精密工程, 2017,25(10s): 130-134 DOI: 10.3788/OPE.20172513.0130.
WU Yu, ZHANG Hong-peng,. Improvement of output characteristic of oil detection chip[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 130-134 DOI: 10.3788/OPE.20172513.0130.
液压系统发生故障可以通过液压油体现出来,金属颗粒是非常重要的参数,对油液中的金属颗粒进行准确的检测,能够对机械设备进行故障诊断和状态预测,因此提高检测芯片的精度尤为重要。为提高电感式微流体检测芯片的精度,对传统的微流体油液检测芯片进行了改进。对聚焦型微流体油液检测芯片的结构进行了设计;利用Maxwell方程对单个倾斜平面线圈的磁场进行理论建模;最后进行实验验证。通过数据处理可得改进后微流体芯片的基础电感为7.894 15×10
-6
H,50个颗粒经过流道的平均电感脉冲值为7.895 08×10
-6
H,因此得到铁颗粒的平均电感增量为9.3×10
-10
H。对比传统的平面线圈微流体电感芯片的平均电感增量为7.008 33×10
-10
H,改进后的具有聚焦功能的微流体电感脉冲值的增量为2.291 67×10
-10
H,提高检测精度达32.67%。
The wear condition of lubrication system can be obtained through the lubrication oil
therefore metal particle is a very important parameter. Accurate detection of the metallic wear particle is vital to avoid catastrophic failure of rotating or reciprocating machine. To improve the sensitivity of inductive microfluidic detection chip
an oil detection microfluidic chip was improved. The structure of the chip was designed
and the electromagnetic model of one tilted planar coil was established by the Maxwell function. Then the experimental verification was performed. The experiment results show that the basic inductance is 7.894 15×10
-6
H and the average inductance variation is 7.895 08×10
-6
H. The inductance variation of the copper particle is up to 9.3×10
-10
H
in comparing with 7.008 33×10
-10
H in planar coil
with a 32.67% improvement in sensitivity.
刘恩辰, 张洪朋, 吴瑜,等. 油液过流速度对船舶液压油检测精度的影响[J]. 光学精密工程, 2016, 24(3):533-539. LIU E C, ZHANG H P, WU Y, et al.. Effect of oil velocity on sensitivity of micron metal particle detection by inductive sensor[J]. Opt. Precision Eng., 2016, 24(3):533-539. (in Chinese)
DU L, ZHE J.Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive coulter counting device[J]. Microfluidics and Nanofluidics, 2010, 9(6):1241-1245.
KWON O K, KONG H S, HAN H G. On-line measurement of contaminant level in lubricating oil:U.S. Patent 6, 151, 108[P]. 2000-11-21.
李梦琪,赵凯,宋永欣. 微流控芯片上油液磨粒电容检测[J]. 大连海事大学学报,2013,39(3):42-46. LI M Q, ZHAO K, SONG Y X. Microfluidic capacitance sensor for detecting metal wear debris in lubrication oil[J]. Dalian Haishi Daxue Xuebao, 2013, 39(3):42-46. (in Chinese)
张兴明. 时谐磁场金属颗粒磁化特性及微流体油液检测机理研究[D].大连:大连海事大学,2014. ZHANG X M.Study on Metal Particle Magnetization in Harmonic Field[D]. Dalian:Dalian Maritime University, 2014. (in Chinese)
王强,张洪朋,张剑锋,等. 用于微流体油液检测芯片的电阻检测法[J]. 光学精密工程,2015,23(10):96-102. WANG Q, ZHANG H P, ZHANG J F, et al.. Resistance detection method for microfluidic oil detection chip[J]. Opt. Precision Eng., 2015, 23(10):96-102. (in Chinese)
吴瑜,张洪朋. 基于空间微螺线管的金属磨粒检测研究[J]. 仪器仪表学报, 2016,37(3):67-74. WU Y, ZHANG H P. Research on the detection of metallic particle based on spatial micro coil[J]. Chinese Journal of Scientific Instrument, 2016, 37(3):67-74. (in Chinese)
范红波,张英堂,李志宁. 电感式磨粒传感器中铁磁质磨粒的磁特性研究[J]. 摩擦学学报,2009,29(5):452-457. FAN H B, ZHANG Y T, LI ZH Y. Study on magnetic characteristic of ferromegnetic wear debris in inductive wear debris sensor[J]. Tribology, 2009, 29(5):452-457. (in Chinese)
范红波,张英堂,陶凤和. 电感式磨粒传感器中非铁磁质磨粒的磁场特性[J]. 传感器与微系统, 2010,29(2):35-37,41. FAN H B, ZHANG Y T, TAO F H. Magnetic characteristic of unferromagnetic wear debris in inductive wear debris sensor[J]. Transducer and Microsystem Technologies, 2010, 29(2):35-37,41. (in Chinese)
傅舰艇,詹惠琴,古军. 三线圈电感式磨粒传感器的检测电路[J]. 仪表技术与传感器, 2012,2:5-7. FU J T, ZHAN H Q, GU J. Detection circuit design of three-coil inductive particle sensor[J].Instrument Technique and Sensor, 2012, 2:5-7. (in Chinese)
王志娟,赵军红,丁桂甫. 新型三线圈式滑油磨粒在线监测传感器[J]. 纳米技术与精密工程,2015,13(2):154-159. WANG ZH J, ZHAO J H, DING G F. A novel online oil debris monitoring sensor with three coils[J].Nanotechnology and Precision Engineering, 2015, 13(2):154-159. (in Chinese)
DU L, ZHE J. Parallel sensing of metallic wear debris in lubricants using undersampling data processing[J]. Tribology International, 2012, 53:28-34.
ZHANG H P, CHON C H, PAN X, et al.. Methods for counting particles in microfluidic applications[J]. Microfluidics and Nanofluidics, 2009, 7(6):739-749.
刘恩辰,张洪朋,曾霖,等. 高精度液压油微小颗粒检测系统[J]. 光学精密工程,2015,23(10):396-402. LIU E CH, ZHANG H P, ZENG L, et al.. Detection system of small particles in hydraulic oil[J]. Opt. Precision Eng., 2015, 23(10):396-402. (in Chinese)
WU Y, ZHANG H P, et al.. Determination of metal particles in oil using a microfluidic chip-based inductive sensor[J]. Instrumentation Science & Technology, 2016, 44(3):259-269.
张洪朋,张兴明,郭力. 微流体油液检测芯片设计[J]. 仪器仪表学报,2013,34(4):762-767. ZHANG H P, ZHANG X M, GUO L. Design of the oil detection microfluidic chip[J]. Chinese Journal of Scientific Instrument, 2013, 34(4):762-767. (in Chinese)
0
浏览量
349
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构