浏览全部资源
扫码关注微信
大连海事大学 轮机工程学院,辽宁 大连,116026
收稿日期:2017-06-02,
修回日期:2017-07-10,
纸质出版日期:2017-11-25
移动端阅览
曾霖, 张洪朋, 虞子雷等. 双线圈谐振式微流体油液检测芯片的检测特性[J]. 光学精密工程, 2017,25(10s): 144-150
ZENG Lin, ZHANG Hong-peng, YU Zi-lei etc. Characteristics of double-coil resonant microfluidic chip for oil detection[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 144-150
曾霖, 张洪朋, 虞子雷等. 双线圈谐振式微流体油液检测芯片的检测特性[J]. 光学精密工程, 2017,25(10s): 144-150 DOI: 10.3788/OPE.20172513.0144.
ZENG Lin, ZHANG Hong-peng, YU Zi-lei etc. Characteristics of double-coil resonant microfluidic chip for oil detection[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 144-150 DOI: 10.3788/OPE.20172513.0144.
为了实现对液压油中微小金属磨粒的高精度检测,设计并制作了双线圈谐振式微流体检测芯片。对该检测芯片的激励频率与电感变化关系以及金属磨粒检测效果进行研究。根据LC谐振原理,设计了双螺线管电感线圈与电容并联的单通道微流体检测芯片,并对其检测原理进行了理论分析;然后在该检测芯片的基础上搭建了油液金属磨粒检测系统;最后,对液压油中的铁颗粒和铜颗粒在不同激励频率下的电感变化特性进行实验研究,并在最优激励频率下进行检测实验。实验结果显示:在低于谐振频率时,铁颗粒产生正向电感变化脉冲而铜颗粒产生负向电感脉冲;高于谐振频率时,铁颗粒产生负向电感变化脉冲而铜颗粒产生正向电感脉冲。在接近谐振频率附近的检测效果达到最佳,此时双线圈谐振式芯片的检测效果要优于双线圈芯片,在实验中实现了10
μ
m铁颗粒和50
μ
m铜颗粒的检测。结果证明,检测芯片实现了液压油中金属磨粒的高精度检测,为液压系统机械故障的预防与诊断提供了技术支持。
In order to realize the high precision detection of fine metal abrasive grains in hydraulic oil
a double-coil resonant microfluidic detection chip was designed and fabricated. The relationship between the excitation frequency and inductance change of the detection chip and the detection effect of metal abrasive grains were studied. First
according to the principle of LC resonance
a single-channel microfluidic detection chip with double solenoid inductor and capacitor in parallel was designed
and its detection principle was analyzed theoretically. Then based on the detection chip
the detection system formetal abrasive grain in oil wasset up. Finally
the experimental study on the inductance change of iron and copper particles in hydraulic oil at different excitation frequencies was carried out
and the detection experiment was carried out under the optimum excitation frequency. The experimental results show that when the frequency is lower than the resonant one
the iron particles produce positive inductance change pulse and the copper particles produce negative inductance pulse. When the frequency is higher than the resonant one
the iron particles produce negative inductance change pulse and the copper particles produce positive inductance pulse. When the frequency is close to the resonantone
the detection effect is the best. At this moment
the detection effect of double-coil resonant chip is better than that of the double coil chip
and the detection of 10
μ
m iron particles and 50
μ
m copper particles is realized in the experiment. The detection chip realizes the high precision detection of the metal abrasive grains in the hydraulic oil
and provides technical support for prevention and diagnosis of mechanical failure of the hydraulic system.
ZHANG H P, HUANG W, ZHANG Y D, et al.. Design of the microfluidic chip of oil detection[J]. Appl. Mech. Mater, 2012, 117:517-520.
EDMONDS J, RESNER M S, SHKARLET K. Detection of precursor wear debris in lubrication systems[C]. Aerospace Conference Proceedings, IEEE, 2000, 6:73-77.
SUN W B. Quantitative estimation technique for wear amounts by real time measurement of wear debris in lubricating oil[C]. Advanced Materials Research. Trans Tech Publications, 2011, 308:647-650.
WU T H, WU H K, DU Y, et al.. Progress and trend of sensor technology for on-line oil monitoring[J]. Science China Technological Sciences, 2013, 56(12):2914-2926.
ZHANG J, DRINGKWATER B W, DWYE R S. Monitoring of lubricant film failure in a ball bearing using ultrasound[J]. Journal of tribology, 2006, 128(3):612-618.
KWON O K, KONG H S, HAN H G, et al.. On-line measurement of contaminant level in lubricating oil:U.S. Patent 6,151,108[P]. 2000-11-21.
刘恩辰,张洪朋,曾霖,等. 高精度液压油中微小颗粒的检测系统[J]. 光学精密工程,2015,10(23):151-157. LIU E CH, ZHANG H P, ZENG L, et al.. Detection system of small particles in hydraulic oil[J]. Opt. Precision Eng., 2015, 10(23):151-157. (in Chinese)
李梦琪, 赵凯, 宋永欣, 等. 微流控芯片上油液磨粒电容检测[J]. 大连海事大学学报,2013,03:42-46. LI M Q, ZHAO K, SONG Y X, et al.. Microfluidic capacitance sensor for detecting metal wear debris in lubrication oil[J]. Dalian Haishi Daxue Xuebao, 2013, 39(3):42-46. (in Chinese)
范红波,张英堂,李志宁,等. 电感式磨粒传感器中铁磁质磨粒的磁特性研究[J]. 摩擦学学报,2009,(05):452-457. FAN H B, ZHANG Y T, LI ZH N, et al.. Study on magnetic characteristic of ferromegnetic wear debris in inductive wear debris sensor[J]. Tribology, 2009,(05):452-457. (in Chinese)
范红波,张英堂,陶凤和,等. 电感式磨粒传感器中非铁磁质磨粒的磁场特性[J]. 传感器与微系统,2010,(02):35-37+41. FAN H B, ZHANG Y T, TAO F H, et al.. Magnetic characteristic of unferromagnetic wear debris in inductive wear debris sensor[J]. Transducer and Microsystem Technologies, 2010, (02):35-37+41.
傅舰艇,詹惠琴,古军. 三线圈电感式磨粒传感器的检测电路[J]. 仪表技术与传感器,2012,(02):5-7. FU J T, ZHAN H Q, GU J. Detection circuit design of three-coil inductive particle sensor[J]. Instrument Technique and Sensor, 2012, (02):5-7.
王志娟,赵军红,丁桂甫. 新型三线圈式滑油磨粒在线监测传感器[J]. 纳米技术与精密工程,2015,(02):154-159. WANG ZH J, ZHAO J H, DING G F. A novel online oil debris monitoring sensor with three coils[J]. Nanotechnology and Precision Engineering, 2015,(02):154-159.
DU L, ZHE J, CARLETTA J, et al.. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device[J]. Microfluidics and nanofluidics, 2010, 9(6):1241-1245.
DU L, ZHU X, HAN Y, et al.. Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method[J]. Measurement Science and Technology, 2013, 24(7):075106.
ZHU X, DU L, ZHE J. A 3×3 wear debris sensor array for real time lubricant oil conditioning monitoring using synchronized sampling[J]. Mechanical Systems and Signal Processing, 2017, 83:296-304.
张洪朋,张兴明,郭力,等. 微流体油液检测芯片设计[J]. 仪器仪表学报, 2013, 34(4):762-767. ZHANG H P, ZHANG X M, GUO L, et al.. Design of the oil detection microfluidic chip[J]. Yiqi Yibiao Xuebao, 2013, 34(4):762-767. (in Chinese)
ZHANG X M, ZHANG H P, SUN Y Q, et al.. Research on the Output Characteristics of Microfluidic Inductive Sensor[J]. Journal of Nanomaterials, 2014, 725246.
王强,张洪朋,张剑锋,等. 用于微流体油液检测芯片的电阻检测法[J]. 光学精密工程,2015,10(23):96-102. WANG Q, ZHANG H P, ZHANG J F, et al.. Resistance detection method for microfluidic oil detection chip[J]. Opt. Precision Eng., 2015, 10(23):96-102. (in Chinese)
WU Y, ZHANG H P, ZENG L, et al.. Determination of metal particles in oil using a microfluidic chip-based inductive sensor[J]. Instrumentation Science & Technology, 2016, 44(3):259-269.
张兴明. 时谐磁场金属颗粒磁化特性及微流体油液检测机理研究[D].大连:大连海事大学,2014. ZHANG X M. Study on metal particle magnetization in harmonic field[D]. Dalian:Dalian Maritime University, 2014. (in Chinese)
0
浏览量
932
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构