浏览全部资源
扫码关注微信
西安电子科技大学 空间科学与技术学院,陕西 西安,710118
收稿日期:2017-06-01,
修回日期:2017-06-27,
纸质出版日期:2017-11-25
移动端阅览
潘蓉, 孙伟, 赵春宇. 导向滤波的航拍图像快速去雾方法及云系统实现[J]. 光学精密工程, 2017,25(10s): 191-198
PAN Rong, SUN Wei, ZHAO Chun-yu. Quick defogging and cloud system realization for aerial image of guided filter[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 191-198
潘蓉, 孙伟, 赵春宇. 导向滤波的航拍图像快速去雾方法及云系统实现[J]. 光学精密工程, 2017,25(10s): 191-198 DOI: 10.3788/OPE.20172513.0191.
PAN Rong, SUN Wei, ZHAO Chun-yu. Quick defogging and cloud system realization for aerial image of guided filter[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 191-198 DOI: 10.3788/OPE.20172513.0191.
提出一种基于导向滤波的航拍图像去雾方法,并实现了基于云计算的去雾系统用于视觉导航和侦察。首先通过暗影通道计算航拍图像的大气幕函数,利用导向滤波计算大气幕函数的边缘保持估计;然后计算原图像和大气幕函数的残差图像并提取其亮通道;最后根据光照反射模型获得场景的反射系数作为复原图像。该方法无需求取全局大气光,利用导向滤波算法可以获得更好的图像细节与整体可见度。与传统的无人机机载处理系统相比,借助云计算强大的分布式计算能力和海量存储能力使得该去雾系统更高效、快速,提高了无人机的续航时间,使实时航拍全天候侦查成为可能,具有广泛的应用前景。
A defogging method of aerial image based on guided filter was proposed
and application of defogging system based on cloud computing in visual navigation and reconnaissance was realized. Firstly
atmospheric curtain function of aerial image was calculated by shadow channel
and edge preservation estimation of atmospheric curtain function was calculated by guided filter; then
residual image of original image and atmospheric curtain function were calculated and bright channel was extracted; finally reflection coefficient of scene was obtained according to light reflection model as recovered image. It wasn't needed to obtain global atmospheric light and better image details and overall visibility by guided filtering algorithm. The defogging method was implemented by powerful computing resources of cloud computing. Compared with traditional airborne processing system by unmanned aerial vehicle (UAV)
using powerful distributed computing power and massive storage capacity of cloud computing makes defogging system more efficient and quicker. It improves duration of flight of unmanned aerial vehicle
makes all-whether reconnaissance of real-time aerial photography become possible
and has extensive application prospect.
HUANG Y Q, DING W R, LI H G. Hazere moval for UAV reconnaissance images using layered scattering model[J]. Journal of Chinese Aeronautics, 2016, 29(2):502-511.
HE K, SUN J, TANG X. Single image haze removal using dark channel prior[C]. 2009 IEEE Conference onComputer Vision and Pattern Recognition, IEEE, 2009:1956-1963.
HE K, SUN J, TANG X. Single Image Haze Removal Using Dark Channel Prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12):2341.
TSACH S, PELED A, PENN D, et al.. Development trends for next generation of UAV systems[C]. AIAA Infotech@Aerospace 2007 Conference and Exhibit, 2013:203-7.
GARG V K. Elements of distributed computing[M]. John Wiley & Sons, Inc. 2002.
FOSTER I. The anatomy of the grid:enabling scalable virtual organizations[C]. Ieee/acm International Symposium on CLUSTER Computing and the Grid, 2001. Proceedings. IEEE, 2002:1-4.
SCHODER D, FISCHBACH K. Peer-to-peer prospects[J]. Communications of the Acm, 2003, 46(2):27-29.
LEYMANN F. Cloud Computing:The Next Revolution in IT[J]. 2009.3-4.
TAN R T. Visibility in bad weather from a single image[C]. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008:1-8.
XIAO C, GAN J. Fast image dehazing using guided joint bilateral filter[J]. The Visual Computer, 2012, 28(6-8):713-721.
SCHWEGLER B. Introduction to open and flexible PaaS with Windows Azure[C]. International Software DevelopmentConference, 2013:1320-1410.
LI H. Introducing Windows Azure[M]. David Chappell & Associates White Paper, 2010:256-260.
SUN W, GUO B L, LI D J, et al.. Fast single-image dehazing method for visible-light systems[J]. Optical Engineering, 2013, 52(9):093103.
SUN W. A new single-image fog removal algorithm based on physical model[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(21):4770-4775.
SUN W, HAN L, GUO B, et al.. A fast color image enhancement algorithm based on Max Intensity Channel.[J]. Journal of Modern Optics, 2014, 61(6):466-477.
唐晏, 王华军, 王建荣,等. 云计算下无人机采集无序位置图像快速拼接[J]. 计算机仿真, 2014(5):407-410. TANG Y, WANG H J, WANG J R, et al.. Unmanned aerial vehicle acquisition disorderly image fast mosaic simulation under cloud computing[J]. Computer Simulation, 2014(5):407-410. (in Chinese)
GINI R, PASSONI D, PINTO L, et al.. Aerial Images from AN Uav System:3d Modeling and Tree Species Classification in a Park Area[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B1:361-366.
GARCÍA-PULIDO J A, PAJARES G, DORMIDO S, et al.. Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques[J]. Expert Systems With Applications, 2017, 76:152-165.
SAIF A F M S, PRABUWONO A S, MAHAYUDDIN Z R. Real Time Vision Based Object Detection from UAV Aerial Images:A Conceptual Framework[M]. Intelligent Robotics Systems:Inspiring the NEXT. Springer Berlin Heidelberg, 2013.
VIRK I S. Cloud Computing:Windows Azure platform[J]. Journal of Global Research in Computer Science, 2012, 3(1):74-76.
ROLOFF E, BIRCK F, DIENER M, et al.. Evaluating High Performance Computing on the Windows Azure Platform[C]. IEEE Fifth International Conference on Cloud Computing. IEEE Computer Society, 2012:803-810.
DOBREA D M, MAXIM D, CEPARU S. A face recognition system based on a Kinect sensor and Windows Azure cloud technology[C]. International Symposium on Signals, Circuits and Systems, 2013:1-4.
0
浏览量
591
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构