浏览全部资源
扫码关注微信
西华大学 计算机与软件工程学院, 四川 成都 610039
收稿日期:2017-06-01,
修回日期:2017-06-19,
纸质出版日期:2017-11-25
移动端阅览
杨淼, 沈沉, 高志升. 基于F-B模板的遥感图像港口高精度分割提取[J]. 光学精密工程, 2017,25(10s): 205-214
YANG Miao, SHEN Chen, GAO Zhi-sheng. High-precision segmentation extraction of harbor in remote sensing images based on F-B template[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 205-214
杨淼, 沈沉, 高志升. 基于F-B模板的遥感图像港口高精度分割提取[J]. 光学精密工程, 2017,25(10s): 205-214 DOI: 10.3788/OPE.20172513.0205.
YANG Miao, SHEN Chen, GAO Zhi-sheng. High-precision segmentation extraction of harbor in remote sensing images based on F-B template[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 205-214 DOI: 10.3788/OPE.20172513.0205.
港口内舰船检测精度极度依赖于港口海陆分割的效果,港口内舰船停靠常常与岸堤相连,为降低港口分割检测难度,依据港口遥感图像特点,提出了一种港口高精度分割提取算法。首先通过遥感图像数据包含的经纬度坐标大致定位感兴趣的港口区域,然后依据港口对应的F(Feature)模板完成检测图像到B(Binary)模板的精确配准,最后根据B模板完成港口高精度分割提取。本文结果图像与模板图像大小、方向一致,具有精确的海陆分割,更有利于后续港口内舰船的高精度检测与识别。通过多组港口遥感图像进行实验,结果表明,与主流港口分割提取算法MLE、OTSU、Mean-shift、LBE和LBP相比,本文算法具有最高的港口分割检测精确度,无论是客观评价还是主管评价都优于同类方法,RUMA评价指标相比同类方法取得显著提高,多组实验相比当前最好方法平均提高2.5倍。
Detection precision of ship in harbor was extremely dependent on the effect of sea-land segmentation in the harbor. Docking of ships in the harbor was usually connected with embankment
which increased the difficulty of harbor segmentation and detection. A high-precision segmentation extraction algorithm of harbor was proposed according to remote sensing image features of the harbor. Interested harbor areas were roughly located by latitude and longitude coordinates contained in remote sensing image data
and then accurate registration from detection image to B (Binary) template was finished according to corresponding F (Feature) of harbor; finally
high-precision segmentation and extraction of harbor was finished according to B template. Resulting images in the thesis were consistent with size and direction of template images
had accurate sea-land segmentation and were more beneficial to high-precision detection and recognition of ships in subsequent harbors. Through experiment by multiple groups of remote sensing images of the harbor
the result shows that algorithm in the thesis has the highest segmentation detection precision of harbor compared with segmentation extraction algorithm of mainstream harbor such as MLE
OTSU
Mean-shift
LBE and LBP and it is superior to other similar methods in both objective evaluation and subjective evaluation. RUMA evaluation index is improved significantly compared with other similar methods
and the best method at present has increased by 2.5 times at average compared with multiple groups of experiments.
陈琪,陆军,杨仝,等.基于模型的遥感图像港口检测[J].信号处理,2010,26(6):941-945. CHEN Q, LU J, YANG T, et al.. Harbor detection of remote sensing images based on model[J]. Signal Processing, 2010,26(6):941-945.(in Chinese)
KADYROV A, YU H, LIU H. Ship Detection and Segmentation Using Image Correlation[C]. 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, 2013:3119-3126.
LIU G, ZHANG Y, ZHENG X, et al.. A New Method on Inshore Ship Detection in High-Resolution Satellite Images Using Shape and Context Information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):617-621.
LIU C, XIAO Y Y, YANG J, et al.. Harbor Detection In Polarimetric SAR Images Based on the Characteristics of Parallel Curves[J]. IEEEGeoscience and Remote Sensing Letters, 2016, 13(10):1400-1404.
陈琪,陆军,杨仝,等.基于感知编组的遥感图像港口港口提取方法[J].信号处理,2010,26(7):1009-1103. CHEN Q, LU J, HUANG G Y. Harbor detection method of remote sensing images based on perceptual organization[J]. Signal Processing, 2010,26(7):1009-1103.(in Chinese)
刘春,殷君君,杨健. 基于岸线特征点合并的极化SAR图像小型港口检测[J].清华大学学报(自然科学版),2015,55(8):848-853. LIU C, YIN J J, YANG J. Small harbor detection in polarimetric SAR images based on coastline feature point merging[J]. Journal of Tsinghua University(Sci & Technol), 2015,55(8):848-853.(in Chinese)
刘伟,陈建宏,曾阳帆,等. 利用先验约束的SAR图像港口检测与鉴别[J].武汉大学学报(信息科学版),2016, 41(10):1319-1325. LIU W, CHEN J H, ZENG Y F, et al.. Harbor Detection and Discrimination of SAR Images with Prior Constraint[J]. Geomatics and Information Science of Wuhan University,2016, 41(10):1319-1325. (in Chinese)
ZHAO H B, LI W H, YU N H, et al.. Harbor detection in remote Sensing images Based on Feature Fusion[C]. 5th International Congress on Image and Signal Processing, 2012:1053-1057.
胡俊华, 徐守时, 陈海林, 等. 基于局部自相似性的遥感图像港口舰船检测[J].中国图象图形学报,2009,14(4):591-597. HU J H, XU SH SH, CHEN H L, et al.. Detection of ships in harbor in remote sensing image based on local self-similarity[J]. Iournal of Image and Graphics, 2009,14(4):591-597.
孙红光, 卜倩, 李欢利,等. 基于OTSU分割的云层背景下弱目标检测算法研究[J].东北师大学报(自然科学),2009, 41(2):79-83. SUN H G, PU Q, LI H L, et al.. The weak target detection algorithm under cloud background based on OTSU segmentation[J]. Journnal of Northeast Normal University(Natural Science Edition), 2009, 41(2):79-83.
XIAO H H, XU Q Z, HU L. A Sea-land Segmentation Algorithm Based on Gray Smoothness Ratio[C]. 4th International Workshop on Earth Observation and Remote Sensing Application, 2016:117-121.
刘春, 谢春华, 安文涛,等.基于多方向突堤扫描的极化SAR图像人工港口检测[J].系统工程与电子技术,2017,2(39):392-297. LIU CH, XIE CH H, AN W T, et al.. Man-made harbor detection in polarimetric SAR images based on multi-direction jetties scanning[J]. Systems Engineering and Electronics, 2017,2(39):392-297.
XIA Y, WAN S, JIN P, et al.. A Novel Sea-Land Segmentation Algorithm Based on Local Binary Patterns for Ship Detection[J]. International Journal of Signal Processing Image Processing and Pattern Recognition, 2014, 3(7):237-246.
TANG J, DENG C, HUANG G B, et al.. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(3):1174-1185.
随银岭, 邹焕新,雷琳,等.一种基于模板的港口舰船目标变化检测方法[J].计算机工程与科学,2013,6(35):134-141. SUI Y L, ZOU H X, LEI L, et al.. A novel change detection method of harbor ship target based on template[J]. Computer Engineering & Science, 2013,6(35):134-141.
BERIL BE ÇBINAR, A. A. ALATAN. Inshore ship detection in high-resolution satellite images:approximation of harbors using sea-land segmentation[C]. SPIE Remote Sensing. International Society for Optics and Photonics, 2015:725-7.
LOWE D G. Object Recognition from Local Scale-Invariant Features[C]. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, 1999:1150.
LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
DELLINGER F, DELON J, GOUSSEAU Y, et al.. SAR-SIFT:A SIFT-Like Algorithm for SAR Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(1):453-466.
TOUZI R, LOPES A, BOUSQUET P. Statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 1988, 26(6):764-773.
JØRTOFT R F, LOPÉS A, MARTHON P, et al.. An Optimal Multiedge Detector for SAR Image Segmentation[J]. IEEE Transactions on Geoscience & Remote Sensing, 1998, 36(3):793-802.
SHAPIRO L S, BRADY J. Feature-based correspondence:An eigenvector approach[J]. Image and Vision Computing, 1992, 10(5):283-288.
ZHANG Y J. A survey on evaluation methods for image segmentation[J]. Pattern Recognition, 1996, 29(8):1335-1346.
MARTIN D R, FOWLKES C, TAL D, et al.. A Database of Human Segmented Natural Images and its Application to[J]. Proc.int'l Conf.computer Vision, 2002, 2(11):416-423 vol.2.
Marina Meilǎ. Comparing clusterings:an axiomatic view[C]. International Conference. DBLP, 2005:577-584.
LI C, KAO C Y, GORE J C, et al.. Implicit Active Contours Driven by Local Binary Fitting Energy[C]. Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007:1-7.
YAN C, SANG N, ZHANG T. Local entropy-based transition region extraction and thresholding[J]. Pattern Recognition Letters, 2003, 24(16):2935-2941.
LI Z, ZHANG D, XX Y, et al.. Modified local entropy-based transition region extraction and thresholding[J]. Applied Soft Computing, 2011, 11(8):5630-5638.
OHTSU N. A Threshold Selection Method from Gray-Level Histograms[J]. Systems Man & Cybernetics IEEE Transactions on, 1979, 9(1):62-66.
JARABO-AMORES P, ROSA-ZURERA M, MATA-MOYA D D L, et al.. Spatial-Range Mean-Shift Filtering and Segmentation Applied to SAR Images[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(2):584-597.
0
浏览量
404
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构