浏览全部资源
扫码关注微信
1. 长春工业大学 计算机科学与工程学院,吉林 长春,130012
2. 吉林财经大学 管理科学与信息工程学院,吉林 长春,130117
收稿日期:2017-06-05,
修回日期:2017-07-10,
纸质出版日期:2017-11-25
移动端阅览
张丽娟, 殷婷婷, 李阳等. 融合双树复小波和改进形态学的视网膜图像增强[J]. 光学精密工程, 2017,25(10s): 235-243
ZHANG Li-juan, YIN Ting-ting, LI Yang etc. Intensification of retinal image integrating dual-tree complex wavelet and improved morphology[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 235-243
张丽娟, 殷婷婷, 李阳等. 融合双树复小波和改进形态学的视网膜图像增强[J]. 光学精密工程, 2017,25(10s): 235-243 DOI: 10.3788/OPE.20172513.0235.
ZHANG Li-juan, YIN Ting-ting, LI Yang etc. Intensification of retinal image integrating dual-tree complex wavelet and improved morphology[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 235-243 DOI: 10.3788/OPE.20172513.0235.
视网膜图像的增强受色差、对比度,血管密集等影响,增强难度高。为此提出一种结合双树复小波和形态学变换优点的增强方法。首先用双树复小波变换去分解视网膜图像;接着,把自适应阈值去噪应用在高频部分,针对低频部分,采用改进的形态学top-hat变换进行处理;最后,采用双树复小波的逆变化进行高低频部分重构,得到增强后的视网膜图像。为验证此算法,把DRIVE数据库中的40幅视网膜图像作为样本进行仿真实验。数据显示,本文算法可以使标准差,均值,信息熵等评价指标提高15%以上;在图像清晰度,差异度与失真度上,与其他算法相比,本文效果优化至少5%以上。综合来讲,本文算法在提高图像的整体视觉效果上具有良好的表现。
In order to solve the problem that the intensification of retinal image affected by chromatic aberration
contrast and dense blood vessels etc
was hard to achieve
an intensification method of combing dual free complex wavelet (DT-CWT) and advantages of morphology transform was proposed. The retinal image was decomposed by using the transformation of dual-tree complex wavelet (DT-CWT)at first
and then adaptive wavelet threshold de-noising was applied to the high-frequency part and for the low-frequency part
top-hat transformation of improved morphology was adopted for its processing
finally
the high-frequency and low-frequency part were reconstructed by adopting the inverse transformation of dual free complex wavelet and the intensified retinal image was obtained. In order to verify the algorithm
40 retinal images in the DRIVE database were used as samples for simulation experiment. The data shows that standard deviation
mean value
information entropy and other evaluation indexes can be increased by more than 15% by using the algorithm of the thesis; for the image definition
diversity factor and degree of distortion are at least optimized by more than 5% compared with other algorithms. Arrivalling at a conclusion that the algorithm proposedperforms better in improving the overall visual effect of image.
MOLODIJ G, RIBAK E N, GLANC M, et al.. Enhancing retinal images by nonlinear registration[J]. Optics Communications, 2015, 342:157-166.
RAJAMANI V.Contrast enhancement using real coded genetic algorithm based modified histograme qualization for gray scale images[J]. International Journal of Imaging Systems &Technology,2015,25(1):24-32.
周妍, 李庆武, 霍冠英. 基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J]. 光学精密工程, 2014, 22(8):2214-2222. ZHOU Y, LI Q G, Huo G W. Adaptive image enhancement based on histogram matching of non sampled Contourlet transform[J]. optical precision engineering, 2014, 22(8):2214-2222.(in Chinese)
陈博洋. 彩色遥感图像的亮度直方图局部线性化增强[J]. 光学精密工程, 2017, 25(2):502-508. CHEN B Y. Local luminance enhancement of luminance histogram of color remote sensing images[J]. Opt.Precision Eng., 2017, 25(2):502-508.. (in Chinese)
赵宏宇, 肖创柏, 禹晶,等. 马尔科夫随机场模型下的Retinex夜间彩色图像增强[J]. 光学精密工程, 2014, 22(4):1048-1055. ZHAO H Y, XIAO C B, YU J, et al.. Markov random field model of the Retinex night color image enhancement[J]. Opt.Pprecision Eng., 2014, 22(4):1048-1055. (in Chinese)
BANERJEE S, MITRA M.Application of cross wavelet transform for ECG pattern analysis and classification[J]. IEEE Transactions on Instrumentation & Measurement, 2014,63(63):326-333.
迟健男, 张闯, 张朝晖,等. 基于反对称双正交小波重构的图像增强方法[J]. 自动化学报, 2010, 36(4):475-487. CHI J N, ZHANG CH, ZHANG ZH H, et al.. Image enhancement method based on antisymmetric biorthogonal wavelet[J]. Acta Automatica Sinica, 2010, 36(4):475-487. (in Chinese)
KUMARI A, THOMAS P J, SAHOO S K. Single image fog removal using gamma transformation and median filtering[C]. India Conference. IEEE, 2014:1-5.
LI X, Ng M K, YUANG X. Median filtering-based methods for static background extraction from surveillance video[J]. Numerical Linear Algebra with Applications, 2015, 22(5):1-10.
JIA Y, BO C. New approach to retinal image enhancement based on Hessian matrix[J]. Journal of Computer Applications, 2012, 31(6):1560-1562.
S LEFKIMMIATIS, A BOURQUARD,M UNSER, et al.. Hessian-based norm regularization for image restoration with biomedical applications[J]. IEEE Transactions on Image Processing, 2012,21(3):983-995.
ABBAS A,TRAN T D. Rational coefficient dual-tree complex wavelet transform:design and implementation[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3523-3534.
ZHU P, MA X, HUANG Z. Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules[J]. Infrared Physics & Technology, 2017,81:282-295.
KUMAR R, SIGNH B, SHAHANI D T, et al.. Dual-tree complex wavelet transform-based control algorithm for power quality improvement in a distribution system[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1):764-772.
SELESNICK I W. Hilbert transform pairs of wavelet bases[J]. IEEE Signal Processing Letters, 2001, 8(6):170-173.
刘成云, 陈振学, 马于涛. 自适应阈值的小波图像去噪[J]. 光电工程, 2007, 34(6):77-81. LIU CH Y, CHEN ZH X, MA, Y T. Wavelet image denoising with adaptive threshold[J]. Opto Electronics Engineering, 2007, 34(6):77-81. (in Chinese)
STAAL J J, ABRAMOFF M D, NIEMEIJER M, et al.. Ridge based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging,2004,23:501-509.
0
浏览量
288
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构