浏览全部资源
扫码关注微信
1. 北京理工大学 深空探测技术研究所 北京,100081
2. “深空自主导航与控制”工信部重点实验室, 北京 100081
收稿日期:2017-07-10,
修回日期:2017-07-27,
纸质出版日期:2017-11-25
移动端阅览
杨世坤, 徐瑞, 朱圣英. 单幅图像行星软着陆障碍区识别[J]. 光学精密工程, 2017,25(10s): 318-324
YANG Shi-kun, XU Rui, ZHU Sheng-ying. Obstacle region recognition using single image for planetary soft landing[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 318-324
杨世坤, 徐瑞, 朱圣英. 单幅图像行星软着陆障碍区识别[J]. 光学精密工程, 2017,25(10s): 318-324 DOI: 10.3788/OPE.20172513.0318.
YANG Shi-kun, XU Rui, ZHU Sheng-ying. Obstacle region recognition using single image for planetary soft landing[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 318-324 DOI: 10.3788/OPE.20172513.0318.
为了解决复杂地形情况下的探测器软着陆障碍检测问题,本文提出了一种基于单幅图像的被动视觉障碍区识别方法。首先,使用基于相位谱法的显著性检测获取图像的显著图,并计算原图像的灰度方差图。接着,以原图像每个像素点对应的显著图像素灰度及方差图像素灰度为两特征量,构建地形图像的二维灰度直方图。通过设计分段伽玛校正函数对两幅特征图像进行增强,使二维灰度直方图呈现良好的峰值特性。然后采用二维大津法对灰度直方图进行分割,得到障碍区域的二值图像。最后使用HIRISE提供的火星地形灰度图像以及对应的高程数据,对障碍区识别算法进行评价。实验表明,算法平均识别正确率TN+TP达到80%,能够在复杂地形环境下有效地分割出障碍区域以及安全区域,为着陆点选择提供参考。
In order to overcome the problem of obstacle detection in complex terrain for planet soft landing
a passive visual obstacle detection method based on single image was proposed. First
a saliency map of the image was obtained using the saliency detection based on the phase spectrum method
and the variance map of the original image was calculated. Then
the two-dimensional histogram of terrain image was constructed by counting the gray level of two graphs
and the segmented Gamma correction was used to enhance the peak feature. Furthermore the two-dimensional histogram of terrain image was segmented by the two-dimensional Otsu method
which was used to obtain the binary image of the obstacle area. Herein
the various terrain grayscale images provided by HIRISE and the corresponding DEM data were employed to evaluate the accuracy of the obstacle detection algorithm. The average detection rate of TN + TP is over 80%. Experiment result indicates that the algorithm can effectively segment the obstacle area and the safety area in complex terrain environments
thus providing useful information for landing point selection.
HUERTAS A, CHENG Y, MADISON R. Passive imaging based multi-cue hazard detection for spacecraft safe landing[C]. IEEE Aerospace Conference, IEEE, 2006:14.
HUERTAS A, CHENG Y, MATTHIES L H. Automatic hazard detection for landers[J]. Proceedings of 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.
ZHANG Z, WANG W, CUI P. A reliable algorithm of rock detection and avoidance for safe spacecraft landing[C]. International Symposium on Systems and Control in Aeronautics and Astronautics, IEEE, 2010:1009-1013.
LI J G, ZHEN J, XIAO-GANG R. Optimal site selection for soft landing on asteroid[C]. Chinese Conference of Control and Decision, 2014:2944-2948.
BANDEIRA L, SARAIVA J, PINA P. Impact crater recognition on mars based on a probability volume created by template matching[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(12):4008-4015.
于正湜, 朱圣英, 马冬梅,等. 行星表面非规则陨石坑检测与识别方法[J]. 宇航学报, 2013, 34(3):320-326. YU ZH SH, ZHU SH Y, MA D M, et al.. Detection and recognition method for irregular craters on planetary surface[J]. Journal of Astronautics, 2013, 34(34):320-326. (in Chinese)
YIN J, LI H, JIA X. Crater detection based on gist features[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(1):23-29.
MATTHIES L, HUERTAS A, CHENG Y, et al.. Landing hazard detection with stereo vision and shadow analysis[C]. IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena:DBLP, 2008:2735-2742.
吴伟仁, 王大轶, 毛晓艳,等. 基于月面单幅图像的软着陆障碍识别与安全区选取方法[J]. 深空探测学报, 2014(4):262-268. WU W R,WANG D Y,MAO X Y, et al..Obstacle recognition and safe area selection method in soft landing based on a single lunar image[J]. Journal of Deep Space Exploration, 2014(4):262-268. (in Chinese)
CHENG Y, JOHNSON A E, MATTHEIS L H, et al.. Passive imaging based hazard avoidance for spacecraft safe landing[J]. IEEE Aerospace Conference Proceedings, 2007:1-7.
MAHMOOD W, SHAH S M A. Vision based hazard detection and obstacle avoidance for planetary landing[C]. International Workshop on Nonlinear Dynamics and Synchronization, IEEE, 2009:175-181.
GONZALEZ R C, WINTZ P. Digital Image Processing[M]. Addison-Wesley, 2007.
GUO C, MA Q, ZHANG L. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[C]. Computer Vision and Pattern Recognition, CVPR 2008, IEEE, 2008:1-8.
0
浏览量
526
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构