浏览全部资源
扫码关注微信
北京控制工程研究所, 北京 100190
收稿日期:2017-08-28,
修回日期:2017-09-07,
纸质出版日期:2017-12-31
移动端阅览
刘兴潭, 吴奋陟, 武延鹏. 小行星光学导航敏感器技术发展趋势[J]. 光学精密工程, 2017,25(12z): 1-17
LIU Xing-tan, WU Fen-zhi, WU Yan-peng. Development trend of optical navigation sensor technology for asteroid exploration[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 1-17
刘兴潭, 吴奋陟, 武延鹏. 小行星光学导航敏感器技术发展趋势[J]. 光学精密工程, 2017,25(12z): 1-17 DOI: 10.3788/OPE.20172514.0001.
LIU Xing-tan, WU Fen-zhi, WU Yan-peng. Development trend of optical navigation sensor technology for asteroid exploration[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 1-17 DOI: 10.3788/OPE.20172514.0001.
随着人类探索太空能力的不断提升,深空探测逐渐成为世界各国航天领域的热点。小行星探测已被列入我国未来深空探测工程四次重大任务之一。其中,导航敏感器技术在提高地面测控效率、增强探测器生存能力、完成定位任务需求等方面具有重要地位。本文综述了国内外小天体深空探测任务方案及导航敏感器配置情况,分别概述了探测器在星际巡航段、接近交会段、绕飞巡视段和下降着陆段的导航方法及敏感器功能,并进一步对现有导航敏感器系统的研究成果进行了概括。最后总结了小行星探测导航敏感器技术的发展趋势,提出我国发展小行星导航技术的建议与思考。
With the advancement of human ability to space exploration
deep space exploration has become a worldwide hot issue in the field of aerospace. In China
asteroid exploration has been involved in the four major tasks of future deep space exploration project. Navigation sensor technology
acting as a research focus in the field of exploration
plays an important role in improving the efficiency of ground measurement and control
enhancing the survivability of probes and completing the positioning task requirements. The paper reviews mission plans for deep space exploration of small celestial bodies and their navigation sensor configurations at home and abroad. The navigation methods and sensor functions of the detector in interplanetary cruise phase
approach interphase phase
flying around inspection phase and falling landing phase are summarized. In addition
the research achievements of existing navigation sensor systems are recapitulated. Finally
the development trend of asteroid detection navigation sensors is summarized and some suggestions and considerations on asteroid navigation technology in China are provided.
杨剑峰, 盛英华, 徐博. 我国小行星探测发展趋势研究[C]. 中国宇航学会深空探测技术专业委员会第九届学术年会论文集(下册), 中国宇航学会深空探测技术专业委员会, 2012. YANG J F, SHENG Y H, XU B. Asteroid detection trends in China[C]. Professional Committee of Chinese Society of Astronautics Deep Space Exploration Technology Proceedings of the Nineth Annual (Book), 2012. (in Chinese)
新华. 中国未来将实施四次重大深空探测任务[J]. 太空探索, 2017(3):5. XIN H. China's future would be the implementation of four major deep space exploration mission[J]. Space Exploration, 2017(3):5. (in Chinese)
LORENZ D A, OLDS R, MAY A, et al.. Lessons learned from OSIRIS-REx autonomous navigation using natural feature tracking[C]. Proceedings of IEEE Aerospace Conference, IEEE, 2017:1-12.
MILLER J K, WILLIAMS B G, BOLLMAN W E, et al.. Navigation of the near earth asteroid rendezvous (NEAR) mission[C]. AAS/AIAA Spaceflight Mechanics Meeting, 1995.
COLE T D. NEAR laser rangefinder:a tool for the mapping and topologic study of asteroid 433 Eros[J]. Johns Hopkins APL Technical Digest, 1998, 19(2):142-157.
RIEDEL J E, BHASKARAN S, SYNNOTT S P, et al.. Navigation for the new millennium:autonomous navigation for deep-space 1[C]. Proceedings of the 12th International Symposium Space Flight Dynamics, European Space Agency, 1997:303.
BHASKARAN S, RIEDEL J E, SYNNOTT S P, et al.. The deep space 1 autonomous navigation system-a post-flight analysis[J]. Astrodynamics Specialist Conference, AIAA, 2000:3935.
刘宇飞. 深空自主导航方法研究及在接近小天体中的应用[D]. 哈尔滨:哈尔滨工业大学, 2007. LIU Y F. Study on the deep space autonomous navigation method and its application in approaching the small celestial bodies[D]. Harbin:Harbin Institute of Technology, 2007. (in Chinese)
羽子. 美国星尘号探测器首次实现彗星采样返回[J]. 国际太空, 2011(1):23-25. YU Z. American Stardust probe comet sample return for the first time[J]. International Space, 2011(1):23-25. (in Chinese)
BHASKARAN S, RIEDEL J E, SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:the STARDUST example[C]. Proceedings of IEEE Aerospace Conference, IEEE, 1998, 2:353-365.
BHASKARAN S, RIEDEL J E, SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:the Stardust example[C]. Proceedings of IEEE Aerospace Conference, IEEE, 1998, 2:353-365.
王存恩. 日本即将发射隼鸟-2小行星探测器[J]. 国际太空, 2014(11):24-35. WANG C E. Japan is about to launch Hayabusa-2 small planetary probes[J]. Space International, 2014(11):24-35. (in Chinese)
KUBOTA T, HASHIMOTO T, KAWAGUCHI J, et al.. Navigation, guidance and control of asteroid sample return spacecraft:MUSES-C[J]. Nec Research & Development, 2001, 425(425):511.
KUBOTA T, HASHIMOTO T, SAWAI S, et al.. An autonomous navigation and guidance system for MUSES-C asteroid landing[J]. Acta Astronautica, 2003, 52(2-6):125-131.
ULAMEC S, ESPINASSE S, FEUERBACHER B, et al.. Rosetta lander-Philae:implications of an alternative mission[J]. Acta Astronautica, 2006, 58(8):435-441.
KELLER H U, BARBIERI C, LAMY P, et al.. OSIRIS-the scientific camera system onboard Rosetta[J]. Space Science Reviews, 2007, 128(1-4):433-506.
ALEXANDER C, CHMIELEWSKI A, GULKIS S, et al.. The U.S. Rosetta Project at its second science target:asteroid (21) lutetia, 2010[C]. Proceedings of IEEE Aerospace Conference, IEEE, 2011:1-22.
BLUME W H. Deep impact mission design[J]. Space Science Reviews, 2005, 117(1-2):23-42.
MASTRODEMOS N, KUBITSCHEK D G, SYNNOTT S P. Autonomous navigation for the deep impact mission encounter with comet tempel 1[J]. Space Science Reviews, 2005, 117(1-2):95-121.
KUBITSCHEK D G, MASTRODEMOS N, SYNNOTT S P, et al.. Deep impact autonomous navigation:the trials of targeting the unknown[C]. 29th Annual AAS Guidance And Control Conference, AAS, 2006.
OWEN W M JR, MASTRODEMOS N, RUSH B P, et al.. Optical navigation for deep impact[C]. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, AAS, 2006:1231-1251.
RUSSELL C T, CAPACCIONI F, CORADINI A, et al.. Dawn discovery mission to Vesta and Ceres:present status[J]. Advances in Space Research, 2006, 38(9):2043-2048.
李虹琳, 李金钊. 美国"黎明号"小行星探测器到达谷神星[J]. 中国航天, 2015(4):14-20. LI H L, LI J ZH. The United States, "Dawn" small planet reach Ceres[J]. Aerospace China, 2015(4):14-20. (in Chinese)
HUANG J C, WANG X L, MENG L ZH, et al.. Approach strategy and imaging technology for Chang'E-2 satellite flying by asteroid 4179 toutatis[J]. Science China Technological Sciences, 2013, 43(5):478-486.
焦维新. "奥西里斯"升空去贝努小行星采样[J]. 国际太空, 2016(9):48-53. JIAO W X, OSIRIS-REx spacecraft launched to Bennu asteroid to collect samples[J]. Space International, 2016(9):48-53. (in Chinese)
李虹琳, 李佳. 美国首次小行星采样返回探测任务[J]. 中国航天, 2016(10):19-24. LI H L, LI J. The first asteroid sampling mission in the United States[J]. Aerospace China, 2016(10):19-24. (in Chinese)
WILLIAM B G. Technical challenges and results for navigation of NEAR Shoemaker[J]. Johns Hopkins APL Technical Digest, 2002, 23(1):34-45.
常晓华. 深空自主导航方法研究及在小天体探测中的应用[D]. 哈尔滨:哈尔滨工业大学, 2010. CHANG X H. Research on deep space autonomous navigation scheme and application to small celestial bodies exploration[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
方海舰, 黄静琪, 张荣之, 等. 基于火箭GNSS数据的北斗卫星射入转移轨道确定[C]. 第七届中国卫星导航学术年会论文集, 中国卫星导航系统管理办公室学术交流中心, 2016. FANG H J, HUANG J Q, ZHANG R ZH, et al.. The Beidou satellite launched into orbit determination based on rocket GNSS data[C]. China Satellite Navigation Academic Conference, 2016. (in Chinese)
刘宇飞, 崔平远. 深空探测巡航段自主光学导航方案研究[J]. 系统仿真学报, 2008, 20(7):1781-1785. LIU Y F, CUI P Y. Autonomous navigation scheme of cruise phase in deep-space exploration[J]. Journal of System Simulation, 2008, 20(7):1781-1785. (in Chinese)
DESAI S, HAN D, BHASKARAN S, et al.. Autonomous optical navigation (AutoNav) technology validation report[J]. Deep Space, 2000, 1:10.
BHASKARAN S, DESAI S D, DUMONT P J, et al.. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]. AAS/AIAA Space Flight Mechanics Meeting, ASS, 1998.
BHASKARAN S, MASTRODEMOS N, RIEDEL J E, et al.. Optical navigation for the stardust wild 2 encounter[C]. Proceedings of the 18th International Symposium on Space Flight Dynamics, European Space Agency, 2004:455.
BHASKARAN S, RIEDEL J E, SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:the STARDUST example[C]. Proceedings of IEEE Aerospace Conference, IEEE, 1998, 2:353-365.
BHASKARAN S, RIEDEL J E, SYNNOTT S P. Demonstration of autonomous orbit determination around small bodies[J]. Proceedings of the AAS/AIAA Astrodynamics Conference, Halifax, Nova Scotia, Canada, February 14-17,1995.
KAWAGUCHI J, HASHIMOTO T, MISU T, et al.. An Autonomous optical guidance and navigation around asteroids[C]. 47th International Astronautical Congress, 1996.
崔平远, 邵巍, 崔祜涛. 绕飞过程中小天体三维模型重构及探测器运动估计研究[J]. 宇航学报, 2010, 31(5):1381-1389. CUI P Y, SHAO W, CUI H T. 3-D small body model reconstruction and spacecraft motion estimation during fly-around[J]. Journal of Astronautics, 2010, 31(5):1381-1389. (in Chinese)
COLE T D. NEAR laser rangefinder:a tool for the mapping and topologic study of asteroid 433 Eros[J]. Johns Hopkins APL Technical Digest, 1998, 19(2):142-157.
BORDI J J, MILLER J K, WILLIAMS B G, et al.. Near Earth Asteroid Rendezvous (NEAR) navigation using altimeter range observations[R]. The Interplanetary Network Progress Report, IPN PR 42-146, 2001.
DE LAFONTAINE J. Autonomous spacecraft navigation and control for comet landing[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3):567-576.
CHAMPETIER C, REGNIER P, DE LAFONTAINE J. Advanced GNC concepts and techniques for an interplanetary mission[C]. Proceedings of the Annual Rocky Mountain Guidance and Control Conference Guidance and Control, 1991:433-452.
KUBOTA T, HASHIMOTO T, SAWAI S, et al.. An autonomous navigation and guidance system for MUSES-C asteroid landing[J]. Acta Astronautica, 2003, 52(2-6):125-131.
MISU T, HASHIMOTO T, NINOMIYA K. Autonomy in guidance using image-based terrain recognition and optical navigation[J]. Journal of the Brazilian Society of Mechanical Sciences, 1999, 21:227-236.
黄翔宇, 张洪华, 王大轶, 等. "嫦娥三号"探测器软着陆自主导航与制导技术[J]. 深空探测学报, 2014, 1(1):52-59. HUANG X Y, ZHANG H H, WANG D Y, et al.. Autonomous navigation and guidance for Chang'E-3 soft landing[J]. Journal of Deep Space Exploration, 2014, 1(1):52-59. (in Chinese)
CHENG Y, JOHNSON A, MATTHIES L. MER-DIMES:a planetary landing application of computer vision[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005, 1:806-813.
JOHNSON A, WILLSON R, CHENG Y, et al.. Design through operation of an image-based velocity estimation system for Mars landing[J]. International Journal of Computer Vision, 2007, 74(3):319-341.
王大轶, 徐超, 黄翔宇. 深空探测着陆过程序列图像自主导航综述[J]. 哈尔滨工业大学学报, 2016, 48(4):1-12. WANG D Y, XU CH, HUANG X Y. Overview of autonomous navigation based on sequential images for planetary landing[J]. Journal of Harbin Institute of Technology, 2016, 48(4):1-12. (in Chinese)
GANDIA F, GRAZIANO M, MILIC E. Optical navigation for cooperative autonomous interplanetary spacecraft[J]. GMV S. A., Isaac Newton, 2003.
ELACHI C. The critical role of communications and navigation technologies to the success of space science enterprise missions[C]. Keynote Address DESCANSO International Symposium, 1999.
DESAI S, HAN D, BHASKARAN S, et al.. Autonomous optical navigation (AutoNav) technology validation report[R]. Deep Space 1 Technology Validation Report, 2002:1-39.
朱圣英. 小天体探测器光学导航与自主控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2009. ZHU SH Y. Optical Navigation and Autonomous Control Methods Research for Small Body Probe[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
崔文. 深空探测光学自主导航研究[D]. 北京:清华大学, 2012. CUI W. Research on Optical Autonomous Navigation for Deep Space Exploration[D]. Beijing:Tsinghua University, 2012. (in Chinese)
何峰, 王峰, 窦伟, 等. 火星探测自主导航光学敏感器设计[C]. 2013上海遥感与社会发展国际学术研讨会论文集, 中国空间科学学会, 上海市红外与遥感学会, 2013. HE F, WANG F, DOU W, et al.. Mars exploration autonomous navigation optical sensor design[C]. China Aerospace Society Deep Space Exploration Technology Specialized Committee Academic Annual Meeting, Chinese Society of Space Research, 2013. (in Chinese)
BHASKARAN S, RIEDEL J E, SYNNOTT S P, et al.. The deep space 1 autonomous navigation system-a post-flight analysis[C]. Astrodynamics Specialist Conference, AIAA, 2000:3935.
BHASKARAN S, DESAI S D, DUMONT P J, et al.. Orbit determination performance evaluation of the deep space 1 autonomous navigation software[C]. AAS/AIAA Space Flight Mechanics Meeting, 1998.
RIEDEL J E, BHASKARAN S, DESAI S, et al.. Deep space 1 technology validation report:autonomous optical navigation[R]. Pasadena CA, USA:JPL Publication, JPL, 2000.
TAKASHI K, MATSUOKA M, UO M. Optical hybrid navigation and station keeping around Itokawa[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA, 2006:21-24.
HAWKINS Ⅲ S E. Overview of the multi-spectral imager on the NEAR spacecraft[J]. Acta Astronautica, 1996, 39(1-4):265-271.
KUBOTA T, HASHIMOTO T, SAWAI S, et al.. An autonomous navigation and guidance system for MUSES-C asteroid landing[J]. Acta Astronautica, 2003, 52(2-6):125-131.
MUKAI T, ARAKI H, MIZUNO T, et al.. Detection of mass, shape and surface roughness of target asteroid of MUSES-C by LIDAR[J]. Advances in Space Research, 2002, 29(8):1231-1235.
AMZAJERDIAN F, PETWAY L B, HINES G D, et al.. Lidar sensors for autonomous landing and hazard avoidance[C]. Proceedings of AIAA SPACE 2013 Conference and Exposition, AIAA, 2013:172-182.
SREFI. Optical, spectroscopic, and infrared remote imaging system[J]. European Space Agency, 2004.
THOMAS N, KELLER H U, ARIJS E, et al.. OSIRIS-the optical, spectroscopic and infrared remote imaging system for the Rosetta orbiter[J]. Advances in Space Research, 1998, 21(11):1505-1515.
SMITH P H, RIZK B, KINNEY-SPANO E, et al.. The OSIRIS-REx camera suite (OCAMS)[C]. Lunar and Planetary Science Conference, 2013, 44:1690.
MASTRODEMOS N, KUBITSCHEK D G, SYNNOTT S P. Autonomous navigation for the deep impact mission encounter with comet tempel 1[J]. Space Science Reviews, 2005, 117(1-2):95-121.
RIZK B, D'AUBIGNY C D, GOLISH D, et al.. OCAMS:the OSIRIS-REx camera suite[J]. 2017:12-18.
0
浏览量
904
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构