浏览全部资源
扫码关注微信
上海宇航系统工程研究所, 上海 201109
收稿日期:2017-08-28,
修回日期:2017-09-11,
纸质出版日期:2017-12-31
移动端阅览
李明, 袁伟, 张雷等. 服务于敏捷光学卫星的可展开太阳电池阵设计[J]. 光学精密工程, 2017,25(12z): 32-38
LI Ming, YUAN Wei, ZHANG Lei etc. Design of deployable solar array for agile optical satellite[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 32-38
李明, 袁伟, 张雷等. 服务于敏捷光学卫星的可展开太阳电池阵设计[J]. 光学精密工程, 2017,25(12z): 32-38 DOI: 10.3788/OPE.20172514.0032.
LI Ming, YUAN Wei, ZHANG Lei etc. Design of deployable solar array for agile optical satellite[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 32-38 DOI: 10.3788/OPE.20172514.0032.
针对敏捷光学卫星动中成像需求中的高刚度可展开太阳电池阵设计,采用高技术成熟度与产品成熟度的部组件,通过将开环机构转化为闭环机构、改变锁定结构从而转换一阶模态振型、对基板结构进行充分加强等方法,开展了基于撑杆刚化单板可展开太阳电池阵的方案设计,并基于机构学分析结果对设计方案进行优化。结果表明,可展开太阳电池阵展开过程平稳,不存在干涉,展开锁定机构锁定有效,展开时间约为4.5 s;展开锁定后太阳电池阵的一阶模态振型为扭转,基频约为6.1 Hz,满足敏捷光学卫星的需求。
In view of the requirement of deployable solar array with high stiffness lead by dynamic imaging in agile optical satellites
a deployable solar array based on truss stiffener was established with components in high technology readiness level and product readiness level. The design of the deployable solar array involved the transition from open loop mechanism to close loop mechanism
the transformation of fundamental mode of vibration by changing the deployed structure
and sufficient reinforcement of the panel. Furthermore
the scheme was optimized via mechanism analysis. The results indicate that the deployable solar array allows a 4.5 s stable deployment without any interference
and the deployment and lock-in mechanism is feasible and stable. The fundamental mode of vibration is torsion with 6.1 Hz frequency. This deployable solar array can satisfy the requirement of agile optical satellites.
朱仁璋, 王鸿芳, 丛云天, 等. 吉林-1与高分-4:中国高分光学卫星技术的重大进展[J]. 国际太空, 2016(8):71-79. ZHU R ZH, WANG H F, CONG Y T, et al.. Jilin-1 and GF-4:significant progress of China's high-resolution optical satellite technologies[J]. Space International, 2016(8):71-79. (in Chinese)
齐真, 詹桓, 李黎. 我国首批0.5米级商业高分辨率遥感卫星高景-1年底发射[J]. 国际太空, 2016(12):2-5. QI ZH, ZHAN H, LI L. China's first 0.5 m commercial remote-sensing satellites SuperView-1 set to be launched[J]. Space International, 2016(12):2-5. (in Chinese)
朱剑冰, 汪路元, 赵魏, 等. 敏捷光学卫星自主任务管理系统关键技术分析[J]. 航天器工程, 2016, 25(4):54-59. ZHU J B, WANG L Y, ZHAO W, et al.. Analysis on key techniques of onboard autonomous mission management system of optical agile satellite[J]. Spacecraft Engineering, 2016, 25(4):54-59. (in Chinese)
刘腾骏, 王海燕, 朱庆华. 敏捷光学卫星多模式推扫成像时的偏流角研究[J]. 上海航天, 2016, 33(3):17-22. LIU T J, WANG H Y, ZHU Q H. Study on drift angle of agile optical satellite with multi-mode scanning imaging[J]. Aerospace Shanghai, 2016, 33(3):17-22. (in Chinese)
李贞, 金涛, 李婷, 等. 敏捷光学卫星无控几何精度提升途径探讨[J]. 航天器工程, 2016, 25(6):25-31. LI ZH, JIN T, LI T, et al.. Discussion of Geo-location accuracy increasing methods of agile satellite without ground control points[J]. Spacecraft Engineering, 2016, 25(6):25-31. (in Chinese)
谢宗武, 宫钇成, 史士财, 等. 空间太阳能电池阵列技术综述[J]. 宇航学报, 2014, 35(5):491-498. XIE Z W, GONG Y CH, SHI SH C, et al.. A survey of the space solar array technique[J]. Journal of Astronautics, 2014, 35(5):491-498. (in Chinese)
刘志全, 杨淑利, 濮海玲. 空间太阳电池阵的发展现状及趋势[J]. 航天器工程, 2012, 21(6):112-118. LIU ZH Q, YANG SH L, PU H L. Development and trend of space solar array technology[J]. Spacecraft Engineering, 2012, 21(6):112-118. (in Chinese)
MURPHEY D M. MegaFlex-the scaling potential of UltraFlex technology[C]. Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, 2012.
ZIRBEL S A, TREASE B P, THOMSON M W, et al.. HanaFlex:a large solar array for space applications[J]. SPIE, 2015, 9467:2177730.
HOANG B, WHITE S, SPENCE B, et al.. Commercialization of deployable space systems' roll-out solar array (ROSA) technology for space systems Loral (SSL) solar arrays[C]. Proceedings of 2016 IEEE Aerospace Conference, IEEE, 2016:1-12.
JOHNSON C L, CARR J, FABISINSKI L, et al.. Lightweight integrated solar array (LISA):providing higher power to small spacecraft[C]. Proceedings of the 13th International Energy Conversion Engineering Conference, AIAA, 2015.
徐伟, 朴永杰. 从Pleiades剖析新一代高性能小卫星技术发展[J]. 中国光学, 2013, 6(1):9-19. XU W, PIAO Y J. Analysis of new generation high-performance small satellite technology based on the Pleiades[J]. Chinese Optics, 2013, 6(1):9-19. (in Chinese)
JUNG O C, YIM H, CHUNG D W, et al.. Comprehensive flight dynamics activities and enhancement for KOMPSAT-3 mission operations[C]. SpaceOps Conferences, AIAA, 2014.
BÉY J L, SIERK B, CARON J, et al.. The Copernicus Sentinel-5 mission for operational atmospheric monitoring:status and developments[J]. SPIE, 2014, 9241:92410H.
张雷. 航天器分步展开式太阳翼设计与研究[D]. 上海:上海交通大学, 2012. ZHANG L. Study on Solar Array Wing of Spacecraft with Deployment by Step[D]. Shanghai:Shanghai JiaoTong University, 2012. (in Chinese)
朱毅麟. 浅论航天型号的技术继承问题[J]. 航天工业管理, 1997(10):9-11. ZHU Y L. Discussion on the technology inheritance of aerospace production[J]. Aerospace Industry Management, 1997(10):9-11. (in Chinese)
0
浏览量
376
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构