浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨,150001
2. 北京航天长征飞行器研究所 北京,100076
收稿日期:2017-08-20,
修回日期:2017-09-10,
纸质出版日期:2017-12-31
移动端阅览
崔乃刚, 李浩, 卢宝刚等. 可重复使用飞行器制导控制一体化技术[J]. 光学精密工程, 2017,25(12z): 52-58
CUI Nai-gang, LI Hao, LU Bao-gang etc. Integrated guidance and control for reusable launch vehicle[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 52-58
崔乃刚, 李浩, 卢宝刚等. 可重复使用飞行器制导控制一体化技术[J]. 光学精密工程, 2017,25(12z): 52-58 DOI: 10.3788/OPE.20172514.0052.
CUI Nai-gang, LI Hao, LU Bao-gang etc. Integrated guidance and control for reusable launch vehicle[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 52-58 DOI: 10.3788/OPE.20172514.0052.
为了确保下一代可重复使用飞行器具有自主再入的能力,避免气动舵故障导致的再入失败,建立了制导控制一体化系统。对该系统所采用的反演制导、控制分配、模型跟踪滤波、抗饱和等算法进行研究。首先,根据再入动力学和运动学方程推导了反演制导算法。接着,由动态逆原理设计了气动舵的分配算法,即先计算控制力矩的伪逆矩阵后进行控制分配。然后,为了提高系统应对模型误差等的鲁棒性,说明了采用前置滤波器进行制导指令跟踪的算法。最后,介绍了系统带宽自适应方法以及积分抗饱和方法。实验结果表明:飞行器安全再入返回的成功率为77%;控制系统的跟踪精度为0.1°。一体化系统可以有效地提高气动舵故障后飞行器再入的安全性,且控制系统具有精度高、抗干扰能力强等要求。
In order to assure the automatic re-entry ability for next generation Reusable Launch Vehicle (RLV)
and avoide the failure lead by breakdown of actuators
an integrated guidance and control system was established. And its applied algorithms such as backstepping guidance
control allocator
model following prefilter
anti-windup and etc were investigated. First
backstepping guidance algorithm was deduced based on entry dynamics and kinematics. Actuators control allocator was analyzed by utilizing the dynamic inverse theory
thus computing the pseudo-inverse matrix based on moments command to reassign actuator commands. Then the algorithm of prefilter by guidance commands following was analyzed to improve the system robustness for model errors. Finally
the method of reference model bandwidth attenuation and integrator anti-windup were discussed. Experimental results indicate that the success ratio of re-entry is 77% and the precision of the control error is within 0.1°. The integrated system can satisfy the system requirements of higher precision and robustness
and increase re-entry safety while RLV's actuators failed to work normally.
FUJⅡ K, ISHIMOTO S. Research activities to realize advanced space transportation system[C]. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA, 2009.
TOMATIS C, BOUAZIZ L, FRANCK T, et al.. RLV candidates for European future launchers preparatory programme[J]. Acta Astronautica, 2009, 65(1-2):40-46.
PAMADI B N, NEIRYNCK T A, HOTCHKO N J, et al.. Simulation and analyses of stage separation of two-stage reusable launch vehicles[C]. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, AIAA, 2008.
WEI ZH ZH, ZHANG G J, LI X. The application of machine vision in inspecting position-control accuracy of motor control systems[C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems, IEEE, 2001, 2:787-790.
SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
LU P. Entry guidance:a unified method[J]. Journal of Guidance, Control and Dynamics, 2014, 37(3):713-728.
LU P, FORBES S, BALDWIN M. Gliding guidance of high L/D hypersonic vehicles[C]. AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA, 2013:1-22.
SARAF A, LEAVITT J A, CHEN D T, et al.. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft Rockets, 2004, 41(6):986-996.
XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
HALBE O, RAJA R G, PADHI R. Robust reentry guidance of a reusable launch vehicle using model predictive static programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1):134-148.
XU Y J, XIN M, VEDULA P. Nonlinear stochastic control Part Ⅱ:ascent phase control of reusable launch vehicles[C]. AIAA Guidance, Navigation, and Control Conference, AIAA, 2009.
ZHU J J, BANKER B D, HALL C E, et al.. X-33 ascent flight control design by trajectory linearization-a singular perturbation approach[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2000:151-170.
LAM Q M, KRISHNAMURTHY P, KHORRAMI F. Enhancing flight control system performance using SDRE based controller as an augmentation layer[C]. AIAA Guidance, Navigation, and Control Conference, AIAA, 2009.
HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
SCHIERMAN J D, HULL J R, WARD D G. Adaptive guidance with trajectory reshaping for reusable launch vehicles[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2002.
SCHIERMAN J D, WARD D G, HULL J R, et al.. Integrated adaptive guidance and control for re-entry vehicles with flight-test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):975-988.
BOLLINO K P, OPPENHEIMER M W, DOMAN D D. Optimal guidance command generation and tracking for reusable launch vehicle reentry[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, AIAA, 2006.
王谦, 李新国. 重复使用运载器的制导与控制一体化设计研究[J]. 飞行力学, 2014, 32(1):57-61. WANG Q, LI X G. Study on integrated guidance and control of reusable launch vehicles[J]. Flight Dynamics, 2014, 32(1):57-61. (in Chinese)
0
浏览量
295
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构