浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨,150001
2. 西安航天动力试验技术研究所,陕西 西安,710000
收稿日期:2017-08-24,
修回日期:2017-09-10,
纸质出版日期:2017-12-31
移动端阅览
曾祥鑫, 关英姿, 晏卓等. 自由漂浮空间机器人最小基座扰动路径规划[J]. 光学精密工程, 2017,25(12z): 67-73
ZENG Xiang-xin, GUAN Ying-zi, YAN Zhuo etc. Path planning for minimizing base disturbance of free-floating space robot[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 67-73
曾祥鑫, 关英姿, 晏卓等. 自由漂浮空间机器人最小基座扰动路径规划[J]. 光学精密工程, 2017,25(12z): 67-73 DOI: 10.3788/OPE.20172514.0067.
ZENG Xiang-xin, GUAN Ying-zi, YAN Zhuo etc. Path planning for minimizing base disturbance of free-floating space robot[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 67-73 DOI: 10.3788/OPE.20172514.0067.
为改善空间自由漂浮机器人抓捕目标的运动过程中基座姿态扰动较大的情况,建立了一种基于Gauss伪谱法的最优路径规划方法。首先,利用空间多刚体动力学理论建立空间机械臂的运动学和动力学模型。然后,采用最优控制问题来描述空间机器人最小基座扰动的路径规划问题,并基于Gauss伪谱法将该最优控制问题在一系列LG(Legendre-Gauss)点上进行离散化,将其转化为非线性规划问题。最后,将所设计的机械臂路径规划方法应用在平面二自由度空间机器人上进行仿真验证。仿真结果表明,该规划算法可快速求解出基座扰动最小的路径规划问题,并且所得到的机械臂运动轨迹连续平滑,与分解加速度控制(RAC)方法比较,基座姿态扰动减小17.5%。可有效的减小机械臂捕捉目标过程中,基座姿态扰动对通信和对地观察等任务的影响。
In order to minimize the base attitude disturbance while free-floating robots captures targets
an optimal path planning method based on Gauss pseudospectral method was proposed. Firstly
the kinetic and dynamical models of space manipulator were established based on space multi-rigid-body dynamics. Then
the optimal control problem was employed to describe the path planning problem for minimum base disturbance
and the optimal control problem was discretized on a series of LG (Legendre-Gauss) points based on the Gauss pseudospectral method
and the optimal control problem was transformed into nonlinear programming problem. Finally
the designed path planning method was simulated by using a planar two degree-of-freedom space manipulator. The simulation results show that the designed algorithm can quickly calculate the path planning problem for minimum base disturbance
and the optimal trajectory of the manipulator is continuous and smooth. The attitude disturbance of the base decreases by 17.5% compared with the Resolved Acceleration Control (RAC) method. It effectively reduces the influence of the base attitude disturbance on the communication and observation of the ground in the process of target acquisition.
KESSLER D J, JOHNSON N L, LIOU J C, et al.. The Kessler syndrome:implications to future space operations[C]. 33rd Annual AAS Guidance and Control Conference, AAS, 2010:6-10.
崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al.. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811. (in Chinese)
GEFKE G, JANAS A, CHIEI R, et al.. Advances in robotic servicing technology development[C]. AIAA SPACE 2015 Conference and Exposition, AIAA, 2015:1-9.
LAMPARIELLO R, AGRAWAL S, HIRZINGER G. Optimal motion planning for free-flying robots[C]. IEEE International Conference on Robotics and Automation, IEEE, 2003, 3:3029-3035.
AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649.
廖一寰, 李道奎, 唐国金. 基于混合规划策略的空间机械臂运动规划研究[J]. 宇航学报, 2011, 32(1):98-103. LIAO Y H, LI D K, TANG G J. Motion planning of space manipulator system based on a hybrid programming strategy[J]. Journal of Astronautics, 2011, 32(1):98-103. (in Chinese)
RYBUS T, SEWERYN K. Trajectory planning and simulations of the manipulator mounted on a free-floating satellite[C]. Conference on Robotics in Aeronautics and Astronautics. Springer, 2013:61-73.
RYBUS T, SEWERYN K, SASIADEK J Z. Trajectory optimization of space manipulator with non-zero angular momentum during orbital capture maneuver[C]. AIAA Guidance, Navigation, and Control Conference, AIAA, 2016:1-13.
戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的Legendre伪谱法[J]. 力学学报, 2016, 48(4):823-831. GE X SH, CHEN K J. Path planning of free-floating space robot using Legendre pseudospectral method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):823-831. (in Chinese)
XU Y SH, KANADE T. Space Robotics:Dynamics and Control[M]. Boston:Springer, 1993:165-204.
0
浏览量
706
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构