浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2017-08-24,
修回日期:2017-09-17,
纸质出版日期:2017-12-31
移动端阅览
何俊培, 徐振邦, 于阳等. 九自由度超冗余机械臂的设计和测试[J]. 光学精密工程, 2017,25(12z): 80-86
HE Jun-pei, XU Zhen-bang, YU Yang etc. Design and experimental testing of a 9-DOF hyper-redundant robotic arm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 80-86
何俊培, 徐振邦, 于阳等. 九自由度超冗余机械臂的设计和测试[J]. 光学精密工程, 2017,25(12z): 80-86 DOI: 10.3788/OPE.20172514.0080.
HE Jun-pei, XU Zhen-bang, YU Yang etc. Design and experimental testing of a 9-DOF hyper-redundant robotic arm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 80-86 DOI: 10.3788/OPE.20172514.0080.
为了更好地执行空间在轨服务任务,设计了面向空间的超冗余九自由度串联机械臂。该串联臂由一种大输出力矩、大减速比、小关节长度的机械臂关节组成,具有结构紧凑、灵活性好、空间避障能力强等特点。首先,介绍了串联臂的设计要求和单关节的主要元器件。接着,以两个关节的传动方式为例分析了串联臂的工作原理,即通过输出轴上的关节连接轴来实现力矩的传递。然后,基于脊椎曲线方法对串联臂末端位置坐标进行推导。最后,对串联臂进行了性能测试。实验结果表明:单关节的输出扭矩值可达190 N·m,运转角速度可达0.14 rad/s,该九自由度机械臂最底端关节的旋转角度误差可控制在0.1°以内。本文设计的九自由度超冗余机械臂具有很好的可重构性,能够满足不同场合的应用需求。
In order to perform on-orbit service tasks better
a spatial 9-DOF hyper-redundant robotic manipulator was designed. This manipulator could provide a large output torque
large reduction ratio and small joint length
with the characteristics of compact structure
high flexibility
space obstacle avoidance and etc. First
the design requirements of manipulator and main components of one joint were presented. Operating principle of the manipulator were analyzed by taking the driving method of two joints as an example. The torque was transferred via connecting shaft of output shaft. Then based on the method of backbone curve
the end-position coordinate of the manipulator was derived. Finally
the performance parameters of the manipulator were tested. The results show that the output torque of single joint can be up to 190 N·m and the angular velocity of single joint reaches 0.14 rad/s. The rotation angle error of the bottom joint of the 9-DOF manipulator is reduced within 0.1°. The proposed 9-DOF hyper-redundant robotic manipulator is reconfigurable and suitable for many different applications.
FLORES-ABAD A, MA O, PHAM K, et al.. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.
KIMURA S, TSUCHIYA S, NISHIDA S, et al.. Module-type space manipulator[J]. SPIE, 1999, 3839:307-315.
KIMURA S, MINENO H, YAMAMOTO H, et al.. Preliminary experiments on technologies for satellite orbital maintenance using Micro-LabSat 1[J]. Advanced Robotics, 2004, 18(2):117-138.
田士涛, 吴清文, 贺帅, 等. 空间机械臂锁紧机构等效线性化分析及验证[J]. 光学精密工程, 2016, 24(3):590-599. TIAN SH T, WU Q W, HE SH, et al.. Linear analysis and practical tests of fixation mechanisms in space robotic arm[J]. Opt. Precision Eng., 2016, 24(3):590-599. (in Chinese)
MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al.. Field trials and testing of the oct arm continuum manipulator[C]. Proceedings of 2006 IEEE International Conference on Robotics and Automation, IEEE, 2006:2336-2341.
ROLLINSON D, BILGEN Y, BROWN B, et al.. Design and architecture of a series elastic snake robot[C]. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2014:4630-4636.
HIRZINGER G, BRUNNER B, LAMPARIELLO R, et al.. Advances in orbital robotics[C]. IEEE International Conference on Robotics and Automation, IEEE, 2000, 1:898-907.
BAILLIEUL J. Avoiding obstacles and resolving kinematic redundancy[C]. 1986 IEEE International Conference on Robotics and Automation, IEEE, 1986:1698-1704.
YOSHIKAWA T. Dynamic manipulability of robot manipulators[C]. 1985 IEEE International Conference on Robotics and Automation, IEEE, 1985:1033-1038.
姜力, 周扬, 孙奎, 等. 七自由度冗余机械臂避障控制[J]. 光学精密工程, 2013, 21(7):1795-1802. JIANG L, ZHOU Y, SUN K, et al.. Obstacle avoidance control for 7-DOF redundant manipulators[J]. Opt. Precision Eng., 2013, 21(7):1795-1802. (in Chinese)
ZHAO J D, ZHAO L L, WANG Y. A Novel Method for the Motion Planning of Hyper-redundant Manipulators Based on Monte Carlo[M]//ZHANG X M, WANG N F, HUANG Y J. Mechanism and Machine Science. Singapore:Springer, 2017:11-22.
ZHAO J D, ZHAO L L, LIU H. Motion planning of hyper-redundant manipulators based on ant colony optimization[C]. Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, IEEE, 2016:1250-1255.
MOCHIYAMA H, SHIMEMURA E, KOBAYASHI H. Shape correspondence between a spatial curve and a manipulator with hyper degrees of freedom[C]. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 1998, 1:161-166.
JONES B A, WALKER I D. Kinematics for multisection continuum robots[J]. IEEE Transactions on Robotics, 2006, 22(1):43-55.
MA S G, WATANABE M, KONDO H. Dynamic control of curve-constrained hyper-redundant manipulators[C]. Proceedings of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, IEEE, 2001:83-88.
CHIRIKJIAN G S, BURDICK J W. A modal approach to hyper-redundant manipulator kinematics[J]. IEEE Transactions on Robotics and Automation, 1994, 10(3):343-354.
ANDREWS L C. Special Functions of Mathematics for Engineers[M]. New York:McGraw Hill Inc., 1992.
刘迎春, 余跃庆. 考虑运动副间隙的连杆及机器人机构研究进展[J]. 机械科学与技术, 2004, 23(4):454-460. LIU Y CH, YU Y Q. A survey of mechanism and robot with clearances[J]. Mechanical Science and Technology, 2004, 23(4):454-460. (in Chinese)
0
浏览量
1080
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构