浏览全部资源
扫码关注微信
哈尔滨工业大学 控制理论与制导技术研究中心,黑龙江 哈尔滨,150001
收稿日期:2017-08-22,
修回日期:2017-09-13,
纸质出版日期:2017-12-31
移动端阅览
李杨, 班晓军, 卢鸿谦等. 基于T-S模糊模型的恒张力系统摩擦预测[J]. 光学精密工程, 2017,25(12z): 87-94
LI Yang, BAN Xiao-jun, LU Hong-qian etc. Friction prediction of constant tension system based on T-S fuzzy model[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 87-94
李杨, 班晓军, 卢鸿谦等. 基于T-S模糊模型的恒张力系统摩擦预测[J]. 光学精密工程, 2017,25(12z): 87-94 DOI: 10.3788/OPE.20172514.0087.
LI Yang, BAN Xiao-jun, LU Hong-qian etc. Friction prediction of constant tension system based on T-S fuzzy model[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 87-94 DOI: 10.3788/OPE.20172514.0087.
吊索恒张力悬挂系统中摩擦力严重影响着系统的精度和性能。为实现对系统中摩擦力的补偿,本文以T-S模糊模型为基础,采用模糊辨识的方法得到系统的模型,从而实现了对摩擦力的预测。采用模糊搜索树法选择了模型的最佳输入变量,引入一种改进的模糊c均值聚类算法提高了系统的辨识效率,并为该算法补充了聚类中心数的选取方法。建立吊索恒张力系统的仿真模型,并以白噪声信号作为输入进行了实验,所得T-S模糊模型输出与仿真输出误差为0.013 5 N,在斜坡、正弦等典型输入信号下,模型输出在1 000 N数量级,而平均误差在0.01 N左右。仿真结果表明,本方法得出的预测模型精度高误差小,是解决恒张力系统摩擦预测问题的有效方法。
The friction seriously affects the accuracy and performance of constant tension suspension systems. In order to compensate the friction force
it is necessary to establish the model of the system and forecast the friction. Based on T-S fuzzy model
we use the method of fuzzy identification to obtain the model of the system
thus realizing the prediction of friction force. The optimal input variables of the model are selected by fuzzy search. An improved fuzzy c-means clustering algorithm is used to improve the efficiency of the system
and the method for selection of the clustering center number is added to the algorithm. The white noise signal is employed as input of the constant tension system model in simulations
and the output error of the obtained T-S fuzzy model is 0.013 5 N. In the slope
sine and other typical input signals
the model output is in the order of 1 000 N and the average error is approximately 0.01 N. The simulation results indicate that the proposed model which has high accuracy and low error is an effective method for friction prediction of constant tension systems.
WHITE G C, XU Y SH. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurement, 1994, 43(6):786-792.
SAHA A, WAHI P, WIERCIGROCH M, et al.. A modified LuGre friction model for an accurate prediction of friction force in the pure sliding regime[J]. International Journal of Non-Linear Mechanics, 2016, 80:122-131.
晋超琼, 张葆, 李贤涛, 等. 基于LuGre模型的航空光电稳定平台的摩擦力矩补偿[J]. 科学技术与工程, 2016, 16(30):103-107. JIN CH Q, ZHANG B, LI X T, et al.. Friction compensation of aerial photoelectrical stabilized platform based on the LuGre model[J]. Science Technology and Engineering, 2016, 16(30):103-107. (in Chinese)
FREIDOVICH L, ROBERTSSON A, SHIRIAEV A, et al.. LuGre-Model-Based friction compensation[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1):194-200.
YU Y, LI Y C, LI J CH. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator[J]. Meccanica, 2015, 50(11):2691-2707.
刘强, 尔联洁, 刘金琨. 摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术, 2002, 24(11):45-52. LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics, 2002, 24(11):45-52. (in Chinese)
TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1):116-132.
SUGENO M, YASUKAWA T. A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(1):7.
YOSHINARI Y, PEDRYCZ W, HIROTA K. Construction of fuzzy models through clustering techniques[J]. Fuzzy Sets and Systems, 1993, 54(2):157-165.
GÓMEZ-SKARMETA A F, JIMÉNEZ F. Fuzzy modeling with hybrid systems[J]. Fuzzy Sets and Systems, 1999, 104(2):199-208.
WANG H O, LI J, NIEMANN D, et al.. T-S fuzzy model with linear rule consequence and PDC controller:a universal framework for nonlinear control systems[C]. Proceedings of 9th IEEE International Conference on Fuzzy Systems, IEEE, 2000, 2:549-554.
HUNG M CH, YANG D L. An efficient fuzzy c-means clustering algorithm[C]. Proceedings of 2001 IEEE International Conference on Data Mining, IEEE, 2001:225-232.
HUNG M CH, WU J P, CHANG J H, et al.. An efficient k-means clustering algorithm using simple partitioning[J]. Journal of Information Science and Engineering, 2005, 21(6):1157-1177.
REZAEE B. A cluster validity index for fuzzy clustering[J]. Fuzzy Sets and Systems, 2010, 161(23):3014-3025.
0
浏览量
498
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构