浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 山东航天电子技术研究所,山东 烟台,264670
收稿日期:2017-08-28,
修回日期:2017-09-21,
纸质出版日期:2017-12-31
移动端阅览
宋明珠, 曲宏松, 李兰民等. 全参考型低照度图像质量评价池化策略[J]. 光学精密工程, 2017,25(12z): 160-167
SONG Ming-zhu, QU Hong-song, LI Lan-min etc. Pooling strategy for quality evaluation of full-reference model low illumination image[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 160-167
宋明珠, 曲宏松, 李兰民等. 全参考型低照度图像质量评价池化策略[J]. 光学精密工程, 2017,25(12z): 160-167 DOI: 10.3788/OPE.20172514.0160.
SONG Ming-zhu, QU Hong-song, LI Lan-min etc. Pooling strategy for quality evaluation of full-reference model low illumination image[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 160-167 DOI: 10.3788/OPE.20172514.0160.
为了设计一种更适用于低照度成像条件下的全参考型图像质量评价方法,针对人眼视觉注意特性及低照度成像的失真特点,提出了基于上下文感知的低照度图像质量评价池化策略。通过不同失真类型下采取不同空间尺度特定权重的方式对图像中的主要对象及其上下文信息进行加权,获取的权重图用于池化特征相似性度量的局部质量图,进而获取最终的质量得分。实验结果表明,本文方法更满足人眼视觉特性,均方根误差达0.623 1,皮尔森线性相关系数达0.885 7,肯德尔等级相关系数达0.704 9,斯皮尔曼等级相关系数达0.885 6,与其他5种主流方法对比,具有最优的主观视觉一致性;同时,针对低照度图像主要的失真类型,4种客观评价指标均优于对比方法。
In order to design method for image quality evaluation of full-reference model more suitable under condition of low illumination imaging
aimed at attention characteristic for human vision and distortion characteristic of low illumination imaging
pooling strategy for quality evaluation with low illumination image based on context-aware was proposed. Through different distortion types
main object and its context information in image were provided with weighting by adopting specific weight methods in different spaces
and obtained Weighting Graph was used for Local Quality Diagram for similarity measurement of pooling characteristic to obtain final quality score. The experimental result shows that method in the Thesis is more satisfying to human visual characteristic
and root-mean-square error reaches 0.623 1
with Pearson linear correlation coefficient reaching 0.885 7
Kendall rank correlation coefficient reaching 0.704 9
Spearman rank correlation coefficient reaching 0.885 6. Compared with other five mainstream methods
it has the optimal subjective visual consistence; at the same time
aimed at main distortion type of low illumination image
four kinds of objective evaluation indexes are superior to contrast method.
WANG ZH, BOVIK A C, SHEIKH H R, et al.. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
ZHANG L, ZHANG L, MOU X Q, et al.. FSIM:a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386.
LI Q H, FANG Y M, XU J T. A novel spatial pooling strategy for image quality assessment[J]. Journal of Computer Science and Technology, 2016, 31(2):225-234.
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, IEEE, 2003:1398-1402.
CHEN G H, YANG CH L, XIE SH L. Gradient-based structural similarity for image quality assessment[C]. Proceedings of 2006 IEEE International Conference on Image Processing, IEEE, 2006:2929-2932.
HUANG Y, CHEN X, DING X H. A harmonic means pooling strategy for structural similarity index measurement in image quality assessment[J]. Multimedia Tools and Applications, 2016, 75(5):2769-2780.
刘国军, 高立霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程, 2017, 25(3):742-748. LIU G J, GAO L X, CHEN L Q. Pooling strategy for full-reference IQA via general means[J]. Opt. Precision Eng., 2017, 25(3):742-748. (in Chinese)
ZHANG ZH, LIU SH, LI A. Image quality assessment via adaptive pooling[C]. Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems, Springer, 2016:709-714.
姚军财, 刘贵忠. 结合人眼对比度敏感视觉特性的视频质量客观评价[J]. 光学精密工程, 2016, 24(3):659-667. YAO J C, LIU G ZH. Video quality objective assessment combined contrast sensitivity characteristics of human visual system[J]. Opt. Precision Eng., 2016, 24(3):659-667. (in Chinese)
GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-Aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.
SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2):430-444.
HORE A, ZIOU D. Image quality metrics:PSNR vs. SSIM[C]. Proceedings of the 20th International Conference on Pattern Recognition, IEEE, 2010:2366-2369.
0
浏览量
425
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构