浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 小卫星技术国家地方联合工程研究中心,吉林 长春,130033
收稿日期:2017-09-13,
修回日期:2017-10-07,
纸质出版日期:2017-12-31
移动端阅览
周美丽, 常琳, 范国伟等. 面向卫星姿控算法快速验证的全物理仿真平台构建[J]. 光学精密工程, 2017,25(12z): 187-195
ZHOU Mei-li, CHANG Lin, FAN Guo-wei etc. Construction of full physical stimulation platform for fast verification of satellite attitude control algorithm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 187-195
周美丽, 常琳, 范国伟等. 面向卫星姿控算法快速验证的全物理仿真平台构建[J]. 光学精密工程, 2017,25(12z): 187-195 DOI: 10.3788/OPE.20172514.0189.
ZHOU Mei-li, CHANG Lin, FAN Guo-wei etc. Construction of full physical stimulation platform for fast verification of satellite attitude control algorithm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 187-195 DOI: 10.3788/OPE.20172514.0189.
为实现卫星姿态控制算法的地面验证,设计一种支持快速、高精度的全物理地面仿真系统。本文以面向卫星姿态控制算法快速验证为目标,设计了以哑铃型三轴气浮台为核心的全物理仿真系统。首先,通过调研国内外气浮台的研发与设计现状,确定了卫星全物理仿真哑铃型三轴气浮台的性能指标。接着,进行了气浮台总体设计。然后,在此基础上,采用组件技术建立了航天器姿态控制系统仿真平台,并对姿态敏感器件和执行机构进行选型,设计控制力矩陀螺群构型等。最后,基于递阶饱和PD控制的姿态机动律,以及基于鲁棒伪逆算法的CMG群操纵律,验证了仿真平台的控制性能。姿态机动仿真结果表明,三轴转台可在27 s内实现40°的多轴大角度快速机动,且姿态指向及稳定度优于0.05°和0.005(°)/s。该仿真系统能够实现满足多约束条件下的姿态快速、精准控制。
n order to realize ground-based verification of attitude control algorithm of satellite
designing one kind of full physical ground stimulation system supporting rapidity and high precision is vital. Taking oriented at fast verification for attitude control algorithm of satellite as target
full physical stimulation system subject to dumbbell-shape three-axis air-bearing as core was designed in the Thesis. Firstly
through researching research and development and current state of design of air-bearing table home and abroad
performance index for dumbbell-shape three-axis air-bearing with full physical stimulation of satellite was confirmed. Then
overall design of air-bearing table was conducted. Afterwards
on the basis
stimulation platform for attitude control system of spacecraft was established by taking advantage of component technology
and sensitive device and actuator of attitude were provided with type selection to design CMGS configuration etc. Finally
control performance for stimulation platform was verified through attitude maneuver law based on by hierarchical saturation PD control and group control law of CMG based on robust pseudo-inverse algorithm. Result of attitude maneuver simulation shows that 40° fast maneuver with multi-axis and large-angle of three-axis tables can be realized within 27 s
and attitude pointing and stability are superior to 0.05° and 0.005 (°)/s. This stimulation system can meet fast and accurate control of attitude under condition of multiple constraints.
许剑, 杨庆俊, 包刚, 等. 多自由度气浮仿真试验台的研究与发展[J]. 航天控制, 2009, 27(6):96-101. XU J, YANG Q J, BAO G, et al.. Research and development of air bearing spacecraft simulator on the multiple degrees of freedom[J]. Aerospace Control, 2009, 27(6):96-101. (in Chinese)
SCHWARTZ J L, PECK M A, HALL C D. Historical review of air-bearing spacecraft simulators[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4):513-522.
SPENCER M G, CHERNESKY V, BAKER J, et al.. Bifocal relay mirror experiments on the NPS three axis spacecraft simulator[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2002.
OTERO A S, CHEN A, MILLER D W, et al.. SPHERES:development of an ISS laboratory for formation flight and docking research[C]. Proceedings of IEEE Aerospace Conference, IEEE, 2002:1-59-1-73.
TISSERA M S C, CHIA J W, LOW K S, et al.. A novel simulator for measuring the performance of nanosatellite's attitude control system[C]. Proceedings of IEEE Aerospace Conference, IEEE, 2016:1-7.
RASOULI K, SHAHBAZI H, ARIAEI A, et al.. Mechatronic design and construction of a five axes satellite simulator[C]. Proceedings of the 20164th International Conference on Robotics and Mechatronics (ICROM), IEEE, 2016:210-215.
TAVAKOLI A, FAGHIHINIA A, KALHOR A. An innovative test bed for verification of attitude control system[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(6):16-22.
刘宗明. 基于气浮台的交会对接仿真控制系统设计与实现[D]. 哈尔滨:哈尔滨工业大学, 2011. LIU Z M. Design and implementation for rendezvous and docking control system of air-bearing table[D]. Harbin:Harbin Institute of Technology, 2011. (in Chinese)
张刘, 孙志远, 金光. 星载TDI CCD动态成像全物理仿真系统设计[J]. 光学精密工程, 2011, 19(3):641-650. ZHANG L, SUN ZH Y, JIN G. Design of physical simulation system for TDI CCD dynamic imaging[J]. Opt. Precision Eng., 2011, 19(3):641-650. (in Chinese)
孙志远, 张刘, 金光, 等. 视频小卫星凝视姿态跟踪的仿真与实验[J]. 光学精密工程, 2011, 19(11):2715-2723. SUN ZH Y, ZHANG L, JIN G, et al.. Simulation and experiment on attitude tracking control of small TV satellite[J]. Opt. Precision Eng., 2011, 19(11):2715-2723. (in Chinese)
五吨承载三轴气浮台研制成功填补我国技术空白[J]. 传感器世界, 2016, 22(9):39. Three-axis air-bearing table weighting five tons has been successfully developed to fill the gaps in technology in China[J]. Sensor World, 2016, 22(9):39. (in Chinese)
贾杰. 航天器姿态半物理仿真原理及其试验方法研究[D]. 西安:西北工业大学, 2006. JIA J. Study of semi-physical simulation theory and its experimentation method of spacecraft attitude[D]. Xi'an:Northwestern Polytechnical University, 2006. (in Chinese)
王亚军. 五自由度气浮平台动态模拟加载方法研究[D]. 沈阳:沈阳理工大学, 2016. WANG Y J. Research on dynamic simulation loading method of five degree of freedom air floating platform[D]. Shenyang:Shenyang Ligong University, 2016. (in Chinese)
黄成, 王岩, 陈兴林. 六自由度气浮台及其姿态平台自动平衡系统设计[J]. 宇航学报, 2016, 37(10):1222-1231. HUANG CH, WANG Y, CHEN X L. Design for the Six-DOF air bearing table and automatic mass balancing system of attitude platform[J]. Journal of Astronautics, 2016, 37(10):1222-1231. (in Chinese)
李季苏, 牟小刚, 张锦江. 卫星控制系统全物理仿真[J]. 航天控制, 2004, 22(2):37-41, 45. LI J S, MU X G, ZHANG J J. Physical simulation for satellite control system[J]. Aerospace Control, 2004, 22(2):37-41, 45. (in Chinese)
0
浏览量
394
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构