浏览全部资源
扫码关注微信
1.北京工业大学 机械工程与应用电子技术学院, 北京 100124
2.北京航空航天大学 仪器科学与光电工程学院, 北京 100191
[ "崔晶(1976-), 女, 黑龙江齐齐哈尔人, 博士, 副教授, 硕士生导师, 2004年于哈尔滨工业大学机器人研究所获得博士学位, 主要从事精密运动控制、嵌入式系统等方面的研究。E-mail:cuijing@bjut.edu.cn" ]
[ "王思宇(1993-), 女, 辽宁人, 硕士研究生, 2015年于沈阳工业大学获得学士学位, 主要从事精密运动控制等方面的研究。E-mail:2466204688@qq.com" ]
收稿日期:2017-04-28,
录用日期:2017-7-14,
纸质出版日期:2018-01-25
移动端阅览
崔晶, 王思宇, 楚中毅. 高加速度运动系统的非线性摩擦前馈补偿控制[J]. 光学 精密工程, 2018,26(1):77-85.
Jing CUI, Si-yu WANG, Zhong-yi CHU. Feed-forward compensation control of nonlinear friction for high acceleration motion system[J]. Optics and precision engineering, 2018, 26(1): 77-85.
崔晶, 王思宇, 楚中毅. 高加速度运动系统的非线性摩擦前馈补偿控制[J]. 光学 精密工程, 2018,26(1):77-85. DOI: 10.3788/OPE.20182601.0077.
Jing CUI, Si-yu WANG, Zhong-yi CHU. Feed-forward compensation control of nonlinear friction for high acceleration motion system[J]. Optics and precision engineering, 2018, 26(1): 77-85. DOI: 10.3788/OPE.20182601.0077.
高加速度运动系统中非线性摩擦的建模补偿对提高轨迹跟踪性能至关重要。本文针对传统参数化模型难以准确预估高加速度运动启停阶段摩擦过冲等非线性摩擦的问题,在传统模型结构的基础上,结合扩展Stribeck模型,提出一种扩展参数化模型,模型参数的训练和学习样本源于高精度迭代学习控制获取的有限轨迹下非线性摩擦前馈补偿数据,并采用Levenberg-Marquardt算法拟合模型参数。最后,在音圈电机驱动的高加速定位平台上针对不同运动轨迹进行了实验验证。结果表明,该方法能够克服传统参数化模型难以消除高加速度启停阶段摩擦过冲等非线性摩擦对轨迹跟踪精度的影响;且与迭代学习控制的轨迹跟踪精度接近,有效避免了迭代学习泛化性差等问题,可实现工作空间下任意轨迹的摩擦补偿。
Modeling compensation of nonlinear friction is vital to improve the trajectory tracking performance of high acceleration motion systems. To overcome the problem of inaccurate estimation of the start-stop stage nonlinear friction (including friction overshoot) associated with the traditional parametric model for high acceleration motion systems
this paper describes a novel extended parametric model combining the traditional model structure with the extended Stribeck model. The training data for identifying the model parameters are obtained using the high-precise Iterative Learning Control (ILC) approach
which supplies the nonlinear friction feed-forward compensation data with limited trajectories in the workspace. The data are fitted with the Levenberg-Marquardt algorithm. Finally
the proposed model is validated with different trajectories on a high acceleration position platform driven by a Voice Coil Motor (VCM). The experimental results indicate that the proposed method can overcome the influence of nonlinear friction associated with the traditional model
including the friction overshoot in the start-stop stage. Moreover
the accuracy is comparable with the result of ILC
but offers the advantage that the proposed model can avoid the problem of poor generalization in ILC to realize the friction compensation of an arbitrary trajectory in the workspace.
李泽源. 基于二自由度理论和内模原理的高速高精度伺服控制器综合设计方法[D]. 北京: 北京交通大学, 2015. http://www.bigengculture.com/shoufeilunwen/xxkjbs/187860.html
LI Z Y. Synthesis Methods for High-speed High-precision Servo Controllers Based on Two-degree-of-freedom Theory and Internal Model Principle [D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
ITO K, MAEBASHI W, YAMAMOTO M, et al. . Fast and precise positioning by sequential adaptive feedforward compensation for disturbance [C]. Proceedings of the 11th IEEE International Workshop on Advanced Motion Control, IEEE, 2010: 19-23.
张新刚. 基于扩展Stribeck效应的摩擦实验建模及系统动力学研究[D]. 上海: 上海交通大学, 2009. http://www.docin.com/p-898525602.html
ZHANG X G. Researches of Experimental Modeling and System Dynamics on Frictions Concerning Extended Stribeck Effect [D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
HOSHINO D, KAMAMICHI N, ISHIKAWA J. Friction compensation using time variant disturbance observer based on the LuGre model[J]. Transactions of the Japan Society of Mechanical Engineers, 2012, 79:1-6.
YOON J Y, TRUMPER D L. Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance[J]. Mechatronics, 2014, 24(6):734-741.
YAMAMOTO M, IWASAKI M, ITO K, et al.. Precise disturbance modeling for improvement of positioning performance[J]. Electrical Engineering in Japan, 2010, 171(2):31-39.
STEFA ŃSKI A, WOJEWODA J, WIERCIGROCH M, et al.. Chaos caused by non-reversible dry friction[J]. Chaos, Solitons & Fractals, 2003, 16(5):661-664.
王一光, 陈兴林, 李晓杰.光刻机工件台宏动三自由度建模及自适应神经网络控制[J].光学 精密工程, 2015, 23(1):132-140.
WANG Y G, CHEN X L, LI X J. Three degrees of freedom modeling and adaptive neural network control for long-stroke wafer stage[J]. Opt. Precision Eng., 2015, 23(1):132-140. (in Chinese)
SHENJ C, LU Q ZH, WU C H, et al.. Sliding-mode tracking control with DNLRX model-based friction compensation for the precision stage[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):788-797.
刘明晓, 龙绪明.基于BP神经网络的贴片机运动精度控制[J].计算机测量与控制, 2014, 22(12):3973-3975, 3979.
LIU M X, LONG X M. Movement precision control of SMT placement based on BP neural network[J]. Computer Measurement & Control, 2014, 22(12):3973-3975, 3979. (in Chinese)
CUI J, ZHAO F, CHU ZH Y, et al.. Experiment on trajectory tracking control of high precise positioning system based on iterative learning controller with wavelet filtering[J]. Mechatronics, 2015, 32:88-95.
崔晶, 王迪凡. X-Y精密定位平台的敏感函数逆前馈补偿控制[J].光学 精密工程, 2015, 23(4):1081-1087.
CUI J, WANG D F. Feedforward compensation control of X-Y precise positioning table using inversed-sensitive function[J]. Opt. Precision Eng., 2015, 23(4):1081-1087. (in Chinese)
LAMPAERT V, AL-BENDER F, SWEVERS J. Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements[J]. Tribology Letters, 2004, 16(1-2):95-105.
STEFA ŃSKI A, WOJEWODA J, FURMANIK K. Experimental and numerical analysis of self-excited friction oscillator[J]. Chaos, Solitons & Fractals, 2001, 12(9):1691-1704.
0
浏览量
755
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构