浏览全部资源
扫码关注微信
天津理工大学 天津市先进机电系统设计与智能控制重点实验室 机械工程学院, 天津 300384
[ "刘凉(1978-), 男, 黑龙江哈尔滨人, 博士, 讲师, 2016年于天津大学获得博士学位, 主要从事机器人动力学与智能控制技术等方面的研究。E-mail:liuliang_tjut@126.com" ]
[ "赵新华(1962-), 男, 吉林辽源人, 博士, 教授, 博士生导师, 2000年于天津大学获得博士学位, 主要从事机器人技术和机电一体化技术方面的研究。E-mail:xinhuazhao@tjut.edu.cn" ]
收稿日期:2017-05-02,
录用日期:2017-8-8,
纸质出版日期:2018-01-25
移动端阅览
刘凉, 赵新华, 王收军, 等. 空间刚柔耦合并联机构的逆动力学建模与控制[J]. 光学 精密工程, 2018,26(1):95-104.
Liang LIU, Xin-hua ZHAO, Shou-jun WANG, et al. Inverse dynamic modeling and control of spatial rigid-flexible parallel manipulator[J]. Optics and precision engineering, 2018, 26(1): 95-104.
刘凉, 赵新华, 王收军, 等. 空间刚柔耦合并联机构的逆动力学建模与控制[J]. 光学 精密工程, 2018,26(1):95-104. DOI: 10.3788/OPE.20182601.0095.
Liang LIU, Xin-hua ZHAO, Shou-jun WANG, et al. Inverse dynamic modeling and control of spatial rigid-flexible parallel manipulator[J]. Optics and precision engineering, 2018, 26(1): 95-104. DOI: 10.3788/OPE.20182601.0095.
为了提高3-RRRU空间刚柔耦合并联机构的轨迹跟踪精度,提出了一种基于瞬态刚体校正法的逆动力学模型求解方法来构建该机构的非线性控制策略。首先,利用自然坐标法和绝对节点坐标法建立该机构的非线性逆动力学模型,它考虑了各支链柔性空间梁单元的剪切效应,并能描述柔性梁的大范围非线性弹性变形。然后,通过分析刚柔耦合动力学模型在求解过程中出现的相容性问题,结合自然坐标法与理想运动学模型,提出了瞬态刚体校正法并求出逆动力学模型的稳定数值因果解。最后,基于该数值解构建并联机构的非线性控制策略,通过仿真与实验验证了该方法的可行性与有效性。仿真与实验结果表明:逆动力学方程组的求解精度为10
-6
,约束方程的相容误差为10
-8
;与刚性并联机构的控制方法相比,该方法在圆形轨迹下的最大跟踪误差降低了0.465 mm,圆度误差降低了0.416 mm。结果表明:该求解方法解决了闭链机构多体动力学方程的违约问题,有效地改善了系统的综合收敛性能,所构建的控制策略提高了并联机构的轨迹跟踪精度。
To improve the trajectory tracking performance of a spatial rigid-flexible 3-RRRU parallel manipulator
a nonlinear control strategy based on a multibody inverse dynamic solution by means of a transient kinematic correction method was proposed. First
the nonlinear inverse dynamics of a spatial 3-RRRU parallel robot with flexible links was developed according to both the Natural Coordinate Formulation (NCF) and the Absolute Nodal Coordinate Formulation (ANCF). The derived models consider the shear deformation and can describe the large deformation for each beam. By analyzing the compatibility problem during the solution process of the rigid-flexible dynamics of the close-chain mechanism
we were able to develop the transient kinematic correction method and the derived stable causal solutions according to the NCF and the ideal kinematic model. Finally
the control strategy for the manipulator is presented
which was based on the solutions and simulations
and experiments were performed to verify the feasibility and effectiveness of the method. The results showed that the solution precision of the inverse dynamics was 10
-6
and that the compatibility error of the constraints was 10
-8
. Compared with those based on the control strategy of the rigid parallel mechanism
the maximum tracking error and the roundness error of a prescribed circular trajectory based on the provided control strategy can decrease by 0.465 mm and 0.416 mm
respectively. The presented method can solve the compatibility problem of multibody dynamics with constraints
thus effectively improving the overall convergent performance of a dynamic system. The control strategy can provide better tracking performance for the parallel mechanism.
YAVUZ Ş, MALGACA L, KARAGÜLLE H. Vibration control of a single-link flexible composite manipulator[J]. Composite Structures, 2016, 140:684-691.
薛志鹏, 厉明, 贾宏光, 等.模态方法下的悬臂梁/类悬臂梁弹性构件的动力学建模[J].光学 精密工程, 2015, 23(8):2250-2257.
XUE ZH P, LI M, JIA H G, et al.. Modal method based dynamic analysis of cantilever type elastic structures[J]. Opt. Precision Eng., 2015, 23(8):2250-2257. (in Chinese)
YU Y Q, DU ZH C, YANG J X, et al.. An experimental study on the dynamics of a 3-RRR flexible parallel robot[J]. IEEE Transactions on Robotics, 2011, 27(5):992-997.
赵磊, 赵新华, 周海波, 等.并联测量机柔性动力学建模与误差耦合[J].光学 精密工程, 2016, 24(10):2471-2479.
ZHAO L, ZHAO X H, ZHOU H B, et al.. Flexible dynamic modeling and error coupling of parallel measuring machine[J]. Opt. Precision Eng., 2016, 24(10):2471-2479. (in Chinese)
WANG X Y, MILLS J K. Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach[J]. Mechanism and Machine Theory, 2006, 41(6):671-687.
YANG Z, SADLER J P. A one-pass approach to dynamics of high-speed machinery through three-node lagrangian beam elements[J]. Mechanism and Machine Theory, 1999, 34(7):995-1007.
ZHANG X P, MILLS J K, CLEGHORN W L. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links[J]. Multibody System Dynamics, 2009, 21(2):167-192.
YAKOUB R Y, SHABANA A A. Three dimensional absolute nodal coordinate formulation for beam elements:Implementation and applications[J]. Journal of Mechanical Design, 2000, 123(4):614-621.
SHABANA A A. Dynamics of Multibody Systems[M]. 4th ed.. Cambridge:Cambridge University Press, 2013.
GARCÍA-VALLEJO D, MAYO J, ESCALONA J L, et al.. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2004, 35(4):313-329.
HUSSEIN B, NEGRUT D, SHABANA A A. Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations[J]. Nonlinear Dynamics, 2008, 54(4):283-296.
CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation:The generalized-α method[J]. Journal of Applied Mechanics, 1993, 60(2):371-375.
DE JALÓN J G, BAYO E. Kinematic and Dynamic Simulation of Multibody Systems:The Real-Time Challenge[M]. New York:Springer, 1994.
ZHANG X P, MILLS J K, CLEGHORN W L. Experimental implementation on vibration mode control of a moving 3-PRR flexible parallel manipulator with multiple PZT transducers[J]. Journal of Vibration and Control, 2010, 16(13):2035-2054.
NACHBAGAUER K, GRUBER P, GERSTMAYR J. Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element:Application to static and linearized dynamic examples[J]. Journal of Computational and Nonlinear Dynamics, 2012, 8(2):021004-021004-7.
0
浏览量
483
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构