浏览全部资源
扫码关注微信
苏州大学 机器人与微系统研究中心, 江苏 苏州 215021
[ "黄婷(1984-), 女, 江西鄱阳人, 博士研究生, 工程师, 2005年、2008年于南昌航空大学分别获得学士、硕士学位, 主要从事工业机器人控制与应用方面的研究。E-mail:hting104@163.com" ]
[ "陈国栋(1983-), 男, 山东济宁人, 博士后, 副教授, 2005年于大连铁道学院获得学士学位, 2007年、2011年于哈尔滨工业大学分别获得硕士、博士学位, 主要从事工业机器人、服务机器人及机器视觉方面的研究。E-mail:chenguodong@suda.edu.cn" ]
收稿日期:2017-04-28,
录用日期:2017-6-13,
纸质出版日期:2018-01-25
移动端阅览
黄婷, 许辉, 樊成, 等. 叶片复杂曲面的机器人抛磨工艺规划[J]. 光学 精密工程, 2018,26(1):132-141.
Ting HUANG, Hui XU, Cheng FAN, et al. Robotic grinding process planning for complex blade surfaces[J]. Optics and precision engineering, 2018, 26(1): 132-141.
黄婷, 许辉, 樊成, 等. 叶片复杂曲面的机器人抛磨工艺规划[J]. 光学 精密工程, 2018,26(1):132-141. DOI: 10.3788/OPE.20182601.0132.
Ting HUANG, Hui XU, Cheng FAN, et al. Robotic grinding process planning for complex blade surfaces[J]. Optics and precision engineering, 2018, 26(1): 132-141. DOI: 10.3788/OPE.20182601.0132.
为了实现复杂曲面工件的智能抛磨加工,对叶片复杂曲面进行机器人抛磨工艺规划。对抛磨点位置规划算法和基于最大接触原则的抛磨姿态规划算法进行了研究。首先,通过平行截面法获得抛磨路径割线,以非均匀有理B样条(NURBS)曲线描述。接着,提取曲线特征参数,根据设定的阈值进行抛磨点规划,再基于抛磨轮与工件的最大接触原则进行抛磨点姿态规划,从而得到完整的抛磨路径。然后,将工件位姿从工件坐标系转换到TCP坐标系。最后,搭建了柔性抛磨系统仿真平台生成机器人控制程序。实验结果表明,此方法规划的路径可用于叶片复杂曲面的机器人抛磨加工。分别用本文规划所得路径和CAM软件规划所得路径对叶片进行抛磨加工,测得表面粗糙度分别为0.695~0.930 μm和2.803~3.243 μm。本文提出的抛磨位姿规划方法可用于复杂曲面工件的抛磨路径规划,使工具和工件保持最大接触,从而避免了位姿不合理所产生的过抛和欠抛。
In order to realize intelligent grinding and machining of workpieces with complex surfaces
robotic grinding process planning for complex blade surfaces was performed.The position planning algorithm of the grind point and the posture planning algorithm based on the maximum contact principle were studied. First
the grind path was obtained through the secant transverse line cutting method and described by NURBS curve
and then the curve feature parameters were extracted and grinding position planning was performed according to the set threshold. Then
based on the maximum contact principle of the grinding wheel andworkpiece
the posture planning of the grind point was presented. After that
the complete grinding path was obtained.Then
the position and posture data were converted from workpiece coordinate system to TCP coordinate system. Finally
the simulation platform of flexible grinding system was constructed to generate robot control program. Experimental results indicate that the proposed path can be used for robotic grinding of blade complex surface. The blades are grinded by using the path obtained by proposed planning method and the path of CAM software planning
and the corresponding surface roughness is 0.695-0.930 μm and 2.803-3.243 μm respectively. Therefore
the proposed method can be applied to the grinding path planning of complex surface. It ensures that the tool and the workpiece are in maximum contact
and thereby avoids uneven grinding caused by the poor position and pose.
苏将兵, 廖宏谊, 苏卿双.机器人模具抛光的研究现状与发展趋势[J].模具工业, 2012, 38(6):63-66.
SU J B, LIAO H Y, SU Q SH. The current status and development trend in research of robotic polishing system for die and mould[J]. Die & Mould Industry, 2012, 38(6):63-66. (in Chinese)
NAGATA F, KUSUMOTO Y, FUJIMOTO Y, et al.. Robotic sanding system for new designed furniture with free-formed surface[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4):371-379.
李龙响, 郑立功, 邓伟杰, 等.应用四轴联动磁流变机床加工曲面[J].光学 精密工程, 2015, 23(10):2819-2826.
LI L X, ZHENG L G, DENG W J, et al.. Magnetorheological finishing for curve surface based on 4-axis machine[J]. Opt. Precision Eng., 2015, 23(10):2819-2826. (in Chinese)
张恩忠, 赵继, 冀世军, 等.基于正交与插值算法的精密抛光平台综合误差建模与补偿[J].光学 精密工程, 2015, 23(12):3422-3429.
ZHANG E ZH, ZHAO J, JI SH J, et al.. Comprehensive error modeling and compensation for precision polishing platform based on orthogonal experiment and interpolation algorithm[J]. Opt. Precision Eng., 2015, 23(12):3422-3429. (in Chinese)
谭福生, 葛景国.力控制技术在机器人打磨中的应用及系统实现[J].上海电气技术, 2008, 1(2):35-40, 48.
TAN F SH, GE J G. Research on force-control-based robotic machining and its package implementation[J]. Journal of Shanghai Electric Technology, 2008, 1(2):35-40, 48. (in Chinese)
TIAN F J, LV CH, LI ZH G, et al.. Modeling and control of robotic automatic polishing for curved surfaces[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 14:55-64.
刘广保. 大型复杂曲面的机器人研抛技术研究[D]. 沈阳: 沈阳理工大学, 2015. http: //cdmd. cnki. com. cn/Article/CDMD-10144-1015435415. htm
LIU G B. Research of robotic grinding and polishing technology for large freeform surface[D]. Shenyang: Shenyang Ligong University, 2015. (in Chinese)
张海洋, 杨文玉, 张家军, 等.叶片机器人砂带磨抛的轨迹规划研究[J].机电工程, 2014, 31(5):578-581, 586.
ZHANG H Y, YANG W Y, ZHANG J J, et al.. Trajectory planning for roboticbelt grinding of turbine blade[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(5):578-581, 586. (in Chinese)
石璟, 张秋菊.六轴联动叶片砂带抛磨中接触轮姿态的确定[J].机械科学与技术, 2010, 29(2):196-200.
SHI J, ZHANG Q J. Determination of contact wheel position and orientation for six-axis blade CNC abrasive belt grinding system[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(2):196-200. (in Chinese)
RADZEVICH S P. A closed-form solution to the problem of optimal tool-path generation for sculptured surface machining on multi-axis NC machine[J]. Mathematical and Computer Modelling, 2006, 43(3-4):222-243.
WANG W, YUN CH. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautic, 2011, 24(4):520-526.
HAN L L, ZHANG Q W, JIA K. A method for path generation of robot automatic polishing based on bounding box[J]. Advanced Materials Research, 2012, 490-495:24-28.
王飞, 张健, 彭利荣, 等.气囊抛光过程的运动精度控制[J].光学 精密工程, 2015, 23(8):2220-2228.
WANG F, ZHANG J, PENG L R, et al.. Motion-precision control in bonnet-polishing[J]. Opt. Precision Eng., 2015, 23(8):2220-2228. (in Chinese)
樊成. 光学曲面确定性抛光的面型精度控制研究[D]. 长春: 吉林大学, 2014. http: //cdmd. cnki. com. cn/Article/CDMD-10183-1014268054. htm
FAN CH. Investigation on Control of Surface Form Accuracy for Deterministic Polishing of Optical Part Surfaces[D]. Changchun: Jilin University, 2014. (in Chinese)
0
浏览量
558
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构