浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "徐阳(1991-), 男, 河北邯郸人, 博士研究生, 2013年于南开大学获得学士学位, 主要从事频率选择表面及功能性薄膜材料的研究。E-mail:nkxuyang@126.com" ]
收稿日期:2016-10-25,
录用日期:2016-11-24,
纸质出版日期:2018-01-25
移动端阅览
徐阳, 徐念喜, 单冬至, 等. 低频带通与带阻自由切换的频率选择表面[J]. 光学 精密工程, 2018,26(1):142-149.
Yang XU, Nian-xi XU, Dong-zhi SHAN, et al. A frequency-selective surface structure arbitrarily switched between band-pass and band-stop responses at low frequency[J]. Optics and precision engineering, 2018, 26(1): 142-149.
徐阳, 徐念喜, 单冬至, 等. 低频带通与带阻自由切换的频率选择表面[J]. 光学 精密工程, 2018,26(1):142-149. DOI: 10.3788/OPE.20182601.0142.
Yang XU, Nian-xi XU, Dong-zhi SHAN, et al. A frequency-selective surface structure arbitrarily switched between band-pass and band-stop responses at low frequency[J]. Optics and precision engineering, 2018, 26(1): 142-149. DOI: 10.3788/OPE.20182601.0142.
为了在不同时域下获得兼具带通与带阻空间滤波功能的低频频率选择表面(FSS),提出了一种带通与带阻型FSS可自由切换的设计方法,即在基于卷曲技术设计的小型化FSS表面上贴装电控PIN二极管,并利用"场-路"协同仿真的方法进行建模与计算。其中,卷曲图案既是滤波结构,也是馈电导线。当PIN二极管导通时,卷曲图案缝隙处产生的电容
C
1
与金属贴片电感
L
1
构成并联LC回路,FSS表现为带通滤波功能;反之,焊盘处缝隙及反偏PIN二极管产生的电容
C
2
与金属贴片电感
L
2
串联,FSS切换为带阻滤波功能。采用印刷线路板及表面贴装工艺制作出了400 mm×400 mm试验样件并采用自由空间法进行测试,仿真与测试结果表明:在2.45 GHz处,当PIN二极管导通时,FSS表现为强透射性能,反之则表现出强反射效果。这种基于电控PIN二极管开关所实现的带通与带阻型FSS自由切换方法在通信、电磁屏蔽及雷达隐身等领域具有广阔的应用前景。
To obtain a frequency-selective surface (FSS) structure with band-pass and band-stop spatial filtering functions at low frequency in different time domains
a design method for switching between band-pass and band-stop responses of the FSS was proposed. It was consisted of mounting PIN diodes on the miniaturized FSS
which was designed based on a convolution technique
and utilizing EM/Circuit Co-Simulation for calculations and analysis. It was noteworthy that the convoluted pattern was not only the filtering structure
but also serves as the feeder. When PIN diodes were in the ON-state
the parallel LC circuit constituted by the inductance
L
1
of the metallic patches and the capacitance
C
1
of the pattern slots represents the band-pass performance of the FSS. Conversely
the total capacitance
C
2
of the reversed PIN diodes and the gap between the pads in series with the inductance
L
2
of the metallic patches indicate the occurrence of band-stop performance for the FSS when the PIN diodes are in the OFF-state. Using a printed circuit board and surface mounting technology
a prototype of 400 mm×400 mm was fabricated and measured by the free space method. The simulation and test results indicate that
for a frequency of 2.45 GHz
the FSS exhibits strong transmission when the PIN diodes are in the ON-state
whereas a strong reflection is obtained when the PIN diodes are in the OFF-state. With this method
arbitrary switching of the FSS between band-pass and band-stop responses is realized
based on electrically controlled PIN diodes
which has a broad range of prospective applications in the fields of telecommunication
electromagnetic shielding
and radar stealth.
王岩松, 高劲松, 陈新, 等.具有低空气隙敏感度的雪花单元频率选择表面[J].光学 精密工程, 2013, 21(8):1949-1956.
WANG Y S, GAO J S, CHEN X, et al.. Snow loop element frequency selective surface with low sensitivity to air gaps[J]. Opt. Precision Eng., 2013, 21(8):1949-1956. (in Chinese)
陈新, 高劲松, 王岩松, 等.叠加Y环单元频率选择表面的设计[J].光学 精密工程, 2011, 19(9):2043-2049.
CHEN X, GAO J S, WANG Y S, et al.. Design of overlapping Y loop element FSS[J]. Opt. Precision Eng., 2011, 19(9):2043-2049. (in Chinese)
徐念喜, 冯晓国, 梁凤超, 等.对称双屏Butterworth型频率选择表面的设计[J].光学 精密工程, 2011, 19(7):1486-1494.
XU N X, FENG X G, LIANG F CH, et al.. Design of symmetric dual Butterworth-type of frequency selective surfaces[J]. Opt. Precision Eng., 2011, 19(7):1486-1494. (in Chinese)
曹尚文, 周永江, 程海峰.变换光学透镜天线研究进展[J].中国光学, 2017, 10(2):164-175.
CAO S W, ZHOU Y J, CHENG H F. Research progress of transformation optics lens antenna[J]. Chinese Optics, 2017, 10(2):164-175.(in Chinese)
李天佑, 黄玲玲, 王涌天.超颖表面原理与研究进展[J].中国光学, 2017, 10(5):523-540.
LI T Y, HUANG L L, WANG Y T. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5):523-540.(in Chinese)
陈勰宇, 田震.石墨烯太赫兹波动态调制的研究进展[J].中国光学, 2017, 10(1):86-97.
CHEN X Y, TIAN Z. Recent progress in terahertz dynamic modulation based on grapheme[J]. Chinese Optics, 2017, 10(1):86-97. (in Chinese)
张磊, 刘硕, 崔铁军.电磁编码超材料的理论与应用[J].中国光学, 2017, 10(1):1-12.
ZHANG L, LIU S, CIU T J. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1):1-12. (in Chinese)
POZARD M, SANCHEZ V. Magnetic tuning of a microstrip antenna on a ferrite substrate[J]. Electronics Letters, 1988, 24(12):729-731.
SHREKENHAMER D, CHEN W CH, PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17):177403.
MAHMOOD M S, DENIDNI T A. Pattern-reconfigurable antenna using a switchable frequency selective surface with improved bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:1148-1151.
LIANGB, SANZ-IZQUIERDO B, PARKER E A, et al.. Cylindrical slot FSS configuration for beam-switching applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1):166-173.
FABIAN-GONGORA H, MARTYNYUK A E, RODRIGUEZ-CUEVAS J, et al.. Active dual-band frequency selective surfaces with close band spacing based on switchable ring slots[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(9):606-608.
ZHANG L, YANG G H, WU Q, et al.. A novel active frequency selective surface with wideband tuning range for EMC purposef[J]. IEEE Transactions on Magnetics, 2012, 48(11):4534-4537.
HUANG X G, SHEN Z, FENG Q Y, et al.. Tunable 3-D bandpass frequency-selective structure with wide tuning range[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7):3297-3301.
ROBERT S J, FORD K L, RIGELSFORD J M. Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1):251-261.
ZENDEJASJ M, GIANVITTORIO J P, RAHMAT-SAMⅡ Y, et al.. Magnetic MEMS reconfigurable frequency-selective surfaces[J]. Journal of Micro-electromechanical Systems, 2006, 15(3):613-623.
SAFARI M, SHAFAI C, SHAFAI L. X-band tunable frequency selective surface using MEMS capacitive loads[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(3):1014-1021.
VARDAXOGLOU J C, LAU P Y, KEARNEY M. Frequency selective surface from optically excited semiconductor on a substrate[J]. Electronics Letters, 1998, 34(6):570-571.
焦健, 徐念喜, 冯晓国, 等.基于十字单元的可调谐互补屏频率选择表面[J].光学 精密工程, 2014, 22(6):1430-1437.
JIAO J, XU N X, FENG X G, et al.. Tunable complementary frequency selective surfaces based on cross-elements[J]. Opt. Precision Eng., 2014, 22(6):1430-1437. (in Chinese)
XU N X, GAO J S, ZHAO J L, et al.. A novel wideband, low-profile and second-order miniaturized band-pass frequency selective surfaces[J]. AIP Advances, 2015, 5(7):077157.
SHI Y R, ZHUANG W, TANG W CH, et al.. Modeling and analysis of miniaturized frequency-selective surface based on 2.5-dimensional closed loop with additional transmission pole[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1):346-351.
CALOZ C, ITOH T. Electromagnetic Metamaterials:Transmission Line Theory and Microwave Applications[M]. Hoboken, New Jersey:John Wiley & Sons, Inc., 2005.
0
浏览量
328
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构