浏览全部资源
扫码关注微信
信息工程大学 导航与空天目标工程学院, 河南 郑州 450001
[ "李明磊(1989-), 男, 河南宝丰人, 博士研究生, 2011年、2014年于信息工程大学分别获得学士和硕士学位, 主要从事激光点云数据处理及精密工程测量等方面的研究工作。E-mail:mingleili_xd@163.com" ]
收稿日期:2017-05-10,
录用日期:2017-7-4,
纸质出版日期:2018-01-25
移动端阅览
李明磊, 王力, 宗文鹏. 采用八叉树体素生长的点云平面提取[J]. 光学 精密工程, 2018,26(1):172-183.
Ming-lei LI, Li WANG, Wen-peng ZONG. Planar feature extraction from unorganized point clouds using octree voxel-based region growing[J]. Optics and precision engineering, 2018, 26(1): 172-183.
李明磊, 王力, 宗文鹏. 采用八叉树体素生长的点云平面提取[J]. 光学 精密工程, 2018,26(1):172-183. DOI: 10.3788/OPE.20182601.0172.
Ming-lei LI, Li WANG, Wen-peng ZONG. Planar feature extraction from unorganized point clouds using octree voxel-based region growing[J]. Optics and precision engineering, 2018, 26(1): 172-183. DOI: 10.3788/OPE.20182601.0172.
提出了一种高效的基于八叉树体素自适应生成与体素分层次生长的平面提取方法,其主要思路为采用体素信息统计的方式进行相关阈值参数的自动选定,以及基于体素的生长替代基于点的生长进行平面提取。首先,对点云进行八叉树初始剖分并计算其几何属性信息(包括法矢、特征值以及维度特征描述符等);然后,通过统计得到细分终止条件,并对初始八叉树进行进一步自适应剖分,得到一系列非均匀八叉树体素;最后,在体素层面进行区域生长阈值的统计与体素的分层次生长,进行点云平面的精细提取。利用4种不同类型的点云数据对本文算法进行了测试。实验结果显示:精度和召回率可以达到95%以上,表明本文算法对数据质量不敏感,可以自动适应不同平台采集的、不同分布密度和不同数据质量的激光点云,并且高效地得到精细的点云平面提取结果。
An efficient method for extraction of planar features from point clouds was proposed based on the concepts of self-adaptive octree voxel generation and voxel-based region growing. The proposed method involved the selection of correlated thresholds through statistics of voxel information. A voxel-based region growing approach was employed for planar feature extraction
instead of a point-based one. A point cloud was voxelized in initial voxel width and the geometrical features for each voxel were calculated
including the normal vector
eigenvalue
and three dimensionality features. The terminal constraints for octree subdivision were thereby determined through statistics and a list of octree voxels with inhomogeneous sizes was obtained after subdivision. Furthermore
planar facets were extracted through voxel-based region growing at different levels associated with the corresponding statistical threshold constraints. Evaluation experiments were performed by analyzing four different types of point clouds. The obtained experimental results show that the precision and recall rates can reach 95%
which indicates that the proposed method is insensitive to data quality and can be adaptive to various laser-scanned point cloud data. The proposed method can therefore achieve fine planar feature extraction results with high operating efficiency.
LIMBERGER F A, OLIVEIRA M M. Real-time detection of planar regions in unorganized point clouds[J]. Pattern Recognition, 2015, 48(6):2043-2053.
FISCHLER M A, BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2):214-226.
GALLO O, MANDUCHI R, RAFⅡ A. CC-RANSAC:fitting planes in the presence of multiple surfaces in range data[J]. Pattern Recognition Letters, 2011, 32(3):403-410.
QIAN X F, YE C. NCC-RANSAC:a fast plane extraction method for 3-D range data segmentation[J]. IEEE Transactions on Cybernetics, 2014, 44(12):2771-2783.
HOUGH P V C. Method and means for recognizing complex patterns: US, 3069654[P]. 1962-12-18.
DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1):11-15.
OGUNDANA O O, COGGRAVE C R, BURGUETE R L, et al.. Automated detection of planes in 3-D point clouds using fast Hough transforms[J]. Optical Engineering, 2011, 50(5):053609.
李明磊, 李广云, 王力, 等. 3D Hough Transform在激光点云特征提取中的应用[J].测绘通报, 2015(2):29-33.
LI M L, LI G Y, WANG L, et al.. Automatic feature detecting from point clouds using 3D Hough Transform[J]. Bulletin of Surveying and Mapping, 2015(2):29-33. (in Chinese)
KIRYATI N, ELDAR Y, BRUCKSTEIN A M. A probabilistic Hough transform[J]. Pattern Recognition, 1991, 24(4):303-316.
YLÄ-JÄÄSKI A, KIRYATI N. Adaptive termination of voting in the probabilistic circular Hough transform[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9):911-915.
VOSSELMAN G, GORTE B G H, SITHOLE G, et al. . Recognizing structure in laser scanner point clouds[C]. International Archives of Photogra mmetry, Remote Sensing and Spatial Information Sciences, ISPRS, 2004: 94-95. https://www.scienceopen.com/document?vid=fcc423a8-9b66-4a9b-8081-dd8084344d97
NGUYEN H H, KIM J, LEE Y, et al. . Accurate and fast extraction of planar surface patches from 3D point cloud[C]. ACM Proceedings of the 7th International Conference on Ubiquitous Information Management and Communication, 2013: 1-8. https://dl.acm.org/citation.cfm?id=2448640
RABBANI T, VAN DEN HEUVEL F A, VOSSELMAN G. Segmentation of point clouds using smoothness constraint[C]. ISPRS International Archives of Photogra mmetry, Remote Sensing and Spatial Information Sciences, 2006: 248-253. https://www.scienceopen.com/document?vid=1ed63adb-b687-4913-b0fd-0b048ee16aaa
杨必胜, 董震, 魏征, 等.从车载激光扫描数据中提取复杂建筑物立面的方法[J].测绘学报, 2013, 42(3):411-417.
YANG B SH, DONG ZH, WEI ZH, et al.. Extracting complex building facades from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):411-417. (in Chinese)
NURUNNABI A, BELTON D, WEST G. Robust segmentation in laser scanning 3D point cloud data[C]. IEEE Proceedings of 2012 International Conference on Digital Image Computing Techniques and Applications, 2012: 1-8. http://ieeexplore.ieee.org/document/6411672/
DESCHAUD J E, GOULETTE F. A fast and accurate plane detection algorithm for large noisy point clouds using filtered normals and voxel growing[C]. IEEE Proceedings of 5th International Symposium on 3D Data Processing Visualization and Transmission, 2010. http://hal.cirad.fr/PARISTECH/hal-01097361
董震, 杨必胜.车载激光扫描数据中多类目标的层次化提取方法[J].测绘学报, 2015, 44(9):980-987.
DONG ZH, YANG B SH. Hierarchical extraction of multiple objects from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):980-987. (in Chinese)
VO A V, TRUONG-HONG L, LAEFER D F, et al.. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogra mmetry and Remote Sensing, 2015, 104:88-100.
官云兰, 程效军, 施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报(自然科学版), 2008, 36(7):981-984.
GUAN Y L, CHENG X J, SHI G G. A robust method for fitting a plane to point clouds[J]. Journal of Tongji University (Natural Science), 2008, 36(7):981-984. (in Chinese)
李明磊, 张蕊, 李广云.激光扫描点云法矢精确计算与表面光顺方法[J].计算机辅助设计与图形学学报, 2015, 27(7):1153-1161.
LI M L, ZHANG R, LI G Y. Accurate normal calculating and surface smoothing of laser-scanned point clouds[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(7):1153-1161. (in Chinese)
DEMANTKÉ J, MALLET C, DAVID N, et al. . Dimensionality based scale selection in 3D LiDAR point clouds[C]. ISPRS International Archives of the Photogra mmetry, Remote Sensing and Spatial Information Sciences, 2011: 97-102. http://adsabs.harvard.edu/abs/2011ISPAr3812W..97D
BORRMANN D, ELSEBERG J. Robotic 3D scan repository-12[EB/OL]. http://kos.informatik.uni-osnabrueck.de/3Dscans/ http://kos.informatik.uni-osnabrueck.de/3Dscans/ .
VALLEB, BRÉDIF M, SERNA A, et al. . TerraMobilita/IQmulus urban point cloud analysis benchmark[EB/OL]. http://data.ign.fr/benchmarks/UrbanAnalysis/ http://data.ign.fr/benchmarks/UrbanAnalysis/ .
ROTTENSTEINER F, SOHN G, GERKE M, et al. . ISPRS test project on urban classification and 3d building reconstruction[EB/OL]. http://www.commission3.isprs.org/wg4/ http://www.commission3.isprs.org/wg4/ .
0
浏览量
600
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构