浏览全部资源
扫码关注微信
1.重庆大学 通信工程学院, 重庆 400044
2.中国科学院 光束控制重点实验室, 四川 成都 610209
[ "李正周(1974-), 男, 重庆垫江人, 博士, 教授, 博士生导师, 2004年于中国科学院光电技术研究所获得博士学位, 主要从事目标探测技术与装备开发方面的研究。E-mail: lizhengzhou@cqu.edu.cn" ]
收稿日期:2017-05-12,
录用日期:2017-7-15,
纸质出版日期:2018-01-25
移动端阅览
李正周, 曹雷, 邵万兴, 等. 基于空时混沌分析的海面小弱目标检测[J]. 光学 精密工程, 2018,26(1):193-199.
Zheng-zhou LI, Lei CAO, Wan-xing SHAO, et al. Detection of small target in sea clutter based on spatio-temporal chaos analysis[J]. Optics and precision engineering, 2018, 26(1): 193-199.
李正周, 曹雷, 邵万兴, 等. 基于空时混沌分析的海面小弱目标检测[J]. 光学 精密工程, 2018,26(1):193-199. DOI: 10.3788/OPE.20182601.0193.
Zheng-zhou LI, Lei CAO, Wan-xing SHAO, et al. Detection of small target in sea clutter based on spatio-temporal chaos analysis[J]. Optics and precision engineering, 2018, 26(1): 193-199. DOI: 10.3788/OPE.20182601.0193.
为了提升海杂波中小弱目标检测能力,通过研究海杂波在空域和时域上的动态特性,提出基于空时混沌分析的海面小弱目标检测方法。首先,在海杂波混沌动力系统相空间重构的基础上提取海浪序列图像的空域混沌参数和时域混沌参数,验证海杂波在空域与时域具备混沌性;然后,采用径向基函数神经网络学习海杂波的空域混沌重构函数、时域混沌重构函数和空时耦合系数,联合空域和时域混沌特性综合重构海杂波在时间与空间上的传播规律。多种复杂度海面目标检测试验结果表明,与空域混沌和时域混沌方法相比,预测误差可降低10%,检测概率可提高20%,基于空时混沌重构的海杂波抑制能力与小目标检测性都得以显著提升。
To improve the performance of the clutter suppression and small target detection
a detection algorithm for a small target in sea clutter was proposed
based on the spatio-temporal chaos analysis. First
the sea clutter phase space was reconstructed as a chaotic dynamical system
and the chaotic parameters of the sea clutter sequence image were extracted to verify that the sea clutter owns chaotic properties in the spatial and temporal domains. Furthermore
the spatial chaotic reconstruction function
the temporal chaotic reconstruction function
and the space-time coupling coefficient were estimated by the radial basis function neural network. Finally
the spatial and temporal chaotic functions were integrated jointly to reconstruct the spreading regularity of the moving sea clutter. Some experiments were induced on the small target in various fluctuating sea clutter
and the experimental results show that the proposed algorithm
can improve the performance of the sea clutter suppression and enhance the small target detection ability
with the prediction error reduced by 10% and the detection probability increased by 20%.
曾文静, 万磊, 张铁栋, 等.复杂海空背景下弱小目标的快速自动检测[J].光学 精密工程, 2012, 20(2):403-412.
ZENG W J, WAN L, ZHANG T D, et al.. Fast detection of weak targets in complex sea-sky background[J]. Opt. Precision Eng., 2012, 20(2):403-412. (in Chinese)
HAYKIN S, PUTHUSSERYPADY S. Chaotic dynamics of sea clutter[J]. Chaos, 1997, 7(4):777-802
MELIEF H W, GREIDANUS H, VAN GENDEREN P, et al.. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4):985-993.
DOYURAN U C, TANIK Y. Expectation maximization-based detection in range-heterogeneous Weibull clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3156-3166.
ROY L P, KUMAR R V R. Accurate K-distributed clutter model for scanning radar application[J]. IET Radar, Sonar & Navigation, 2010, 4(2):158-167.
裴立力, 罗海波, 耿彦峰, 等.基于小波变换的海面目标自动检测[J].兵工学报, 2008, 29(4):401-404.
PEI L L, LUO H B, GENG Y F, et al.. Automatic sea target detection based on wavelet transform[J]. Acta Armamentarii, 2008, 29(4):401-404. (in Chinese)
徐芳, 刘晶红, 曾冬冬, 等.基于视觉显著性的无监督海面舰船检测与识别[J].光学 精密工程, 2017, 25(5):1300-1311.
XU F, LIU J H, ZENG D D, et al.. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency[J]. Opt. Precision Eng., 2017, 25(5):1300-1311. (in Chinese)
HAN S K, RA W S, WHANG I H, et al.. Linear recursive passive target tracking filter for cooperative sea-skimming anti-ship missiles[J]. IET Radar, Sonar & Navigation, 2014, 8(7):805-814.
张仲瑜, 焦淑红.多特征融合的红外舰船目标检测方法[J].红外与激光工程, 2015, 44(S1):29-34.
ZHANG ZH Y, JIAO SH H. Infrared ship target detection method based on multiple feature fusion[J]. Infrared and Laser Engineering, 2015, 44(S1):29-34. (in Chinese)
HAYKIN S, LI X B. Detection of signals in chaos[J]. Proceedings of the IEEE, 1995, 83(1):95-122.
LI B X, HAYKIN S. Chaotic detection of small target in sea clutter[C]. Proceedings of 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, 1993: 237-240.
李正周, 陈静, 沈美容, 等.基于混沌神经网络的海上目标图像的海杂波抑制方法[J].光电子·激光, 2014, 25(3):588-594.
LI ZH ZH, CHEN J, SHEN M R, et al.. Sea clutter suppression approach for target images at sea based on chaotic neural network[J]. Journal of Optoelectronics·Laser, 2014, 25(3):588-594. (in Chinese)
何四华, 杨绍清, 石爱国, 等.基于图像区域Lyapunov指数的海面舰船目标检测[J].物理学报, 2009, 58(2):794-801.
HE S H, YANG SH Q, SHI A G, et al.. Detection of ship targets on the sea surface based on Lyapunov exponents of image block[J]. Acta Physica Sinica, 2009, 58(2):794-801. (in Chinese)
XIN ZH H, LIAO G SH, YANG ZH W, et al.. A deterministic sea-clutter space-time model based on physical sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6659-6673.
张淑清, 贾健, 高敏, 等.混沌时间序列重构相空间参数选取研究[J].物理学报, 2010, 59(3):1576-1582.
ZHANG SH Q, JIA J, GAO M, et al.. Study on the parameters determination for reconstructing phase-space in chaos time series[J]. Acta Physica Sinica, 2010, 59(3):1576-1582. (in Chinese)
LEUNG H, HENNESSEY G, DROSOPOULOS A. Signal detection using the radial basis function coupled map lattice[J]. IEEE Transactions on Neural Networks, 2000, 11(5):1133-1151.
EGOLF D A, MELNIKOV I V, PESCH W, et al.. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bénard convection[J]. Nature, 2000, 404(6779):733-736.
LEI Y W, DING L X, ZHANG W SH. Generalization performance of radial basis function networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(3):551-564.
0
浏览量
373
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构