浏览全部资源
扫码关注微信
1.中国科学院 安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
2.中国科学技术大学, 安徽 合肥 230026
[ "刘秋武(1975-), 男, 广东潮州人, 博士研究生, 副教授, 2004年于电子科技大学获得硕士学位, 主要从事差分吸收激光雷达探测大气痕量气体的研究。E-mail:qwliu@hstc.edu.cn" ]
收稿日期:2017-07-15,
录用日期:2017-9-30,
纸质出版日期:2018-02-25
移动端阅览
刘秋武, 陈亚峰, 王杰, 等. 差分吸收NO2激光雷达波长漂移和能量波动对浓度反演的影响[J]. 光学 精密工程, 2018,26(2):253-260.
Qiu-wu LIU, Ya-feng CHEN, Jie WANG, et al. Effects of wavelength shift and energy fluctuation on inversion of NO2 differential absorption lidar[J]. Optics and precision engineering, 2018, 26(2): 253-260.
刘秋武, 陈亚峰, 王杰, 等. 差分吸收NO2激光雷达波长漂移和能量波动对浓度反演的影响[J]. 光学 精密工程, 2018,26(2):253-260. DOI: 10.3788/OPE.20182602.0253.
Qiu-wu LIU, Ya-feng CHEN, Jie WANG, et al. Effects of wavelength shift and energy fluctuation on inversion of NO2 differential absorption lidar[J]. Optics and precision engineering, 2018, 26(2): 253-260. DOI: 10.3788/OPE.20182602.0253.
为评估差分吸收二氧化氮激光雷达中激光器的稳定性对反演浓度的影响,以NO
2
的吸收谱和激光雷达方程为基础,分析了波长漂移和能量波动对距离分辨差分吸收激光雷达浓度反演带来的相对误差。采用两台Nd:YAG激光器的354.7 nm波长分别泵浦两台染料激光器的方式,产生差分吸收探测所需的两个波长
λ
on
(448.10 nm)和
λ
off
(446.80 nm),搭建探测大气NO
2
实验系统,并就波长漂移和能量波动对NO
2
浓度反演影响进行了实验验证。实验结果表明:在没有稳频条件下,当
λ
on
和
λ
off
波长漂移≤ 0.005 nm时,引起的浓度相对误差为≤ 3%;能量波动对反演浓度没有影响,但能量降低减小探测距离,当能量下降≤ 5%时,探测距离≤ 100 m,实验结果与理论计算基本一致。最后,开展了大气NO
2
浓度实验观测,获得实验期间水平及垂直高度0.5~3 km内NO
2
浓度的分布廓线,系统稳定可靠。本方法为实用化NO
2
差分吸收激光雷达的设计及应用提供了理论依据及技术支持。
To evaluate the effect of the stability of the laser on the inversion of the NO
2
distribution in differential absorption based on the NO
2
absorption spectrum and the lidar equation. The relative errors caused by wavelength shift and energy fluctuation in the range resolved differential absorption lidar were analyzed. Two Nd:YAG lasers are used to pump into two dye lasers to produce two wavelengths
λ
on
(448.1 nm) and
λ
off
(446.6 nm)
respectively. In the absence of frequency and power stability conditions
the influence of the change of NO
2
absorption cross section caused by wavelength drift on the inversion concentration was analyzed. When the two wavelengths' drift is less than 0.005 nm
the total relative error of inversion concentration due to
λ
on
and
λ
off
wavelength drift is less than 3%
and
λ
on
drift is the main factor. Then the influence of energy fluctuation on the inversion concentration is analyzed. The results show that the energy fluctuation has no effect on the inversion concentration
but the energy reduction will increase the statistical error. When the energy fluctuates in a range of 5% or less
detection range decreases about 100 meters. Lastly
the vertical or horizontal NO
2
profiles were measured at range of 0.5 km to 3.0 km. This method provides theoretical basis and technical support for the design and application of practical NO
2
differential absorption lidar.
FINLAYSON-PITTS B J, PITTS JR J N. Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications[M]. San Diego:Academic Press, 1999.
KANAYA Y, IRIE H, TAKASHIMA H, et al.. Long-term MAX-DOAS network observations of NO 2 in Russia and Asia (MADRAS) during the period 2007-2012:instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations[J]. Atmospheric Chemistry and Physics, 2014, 14(15):7909-7927.
唐孝炎, 张远航, 邵敏, 等.大气环境化学[M]. 2版.北京:高等教育出版社, 2006.
TANG X Y, ZHANG Y H, SHAO M, et al.. Atmospheric Environmental Chemistry[M]. 2nd ed.. Beijing:Higher Education Press, 2006. (in Chinese)
吴丰成, 李昂, 谢品华, 等.车载多轴差分吸收光谱探测对流层NO 2 分布研究[J].物理学报, 2015, 64(11):114211.
WU F CH, LI A, XIE P H, et al.. Dectection and distribution of tropospheric NO 2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2015, 64(11):114211. (in Chinese)
SCHOTLAND R M. Some observations of the vertical profile of water vapor by means of a laser optical radar[C]. Proceedings of the 4th Symposium on Remote Sensing of the Environment, University of Michigan, 1966.
FREDRIKSSON K, GALLE B, NYSTROM K, et al.. Mobile lidar system for environmental probing[J]. Applied Optics, 1981, 20(24):4181-4189.
KÖLSCH H J, P. RAIROUX, P, WOLF J P, et al.. Simultaneous NO and NO 2 DIAL measurement using BBO crystals[J]. Applied Optics, 1989, 28(11):2052-2056.
MORI H, NAYUKI T, CAO N W, et al.. Development of a laser radar using LDS dye and sum frequency generation for NO 2 measurement[J]. Electrical Engineering in Japan, 2003, 144(2):26-33.
张寅超, 胡欢陵, 谭锟, 等. AML-1车载式大气污染监测激光雷达样机研制[J].光学学报, 2004, 24(8):1025-1031.
ZHANG Y CH, HU H L, TAN K, et al.. Development of a mobile lidar system for air pollution monitoring[J]. Acta Optica Sinica, 2004, 24(8):1025-1031. (in Chinese)
陶宗明, 张寅超, 岑岗, 等.激光雷达探测污染气体最小浓度的估算方法[J].光学学报, 2004, 24(5):602-604.
TAO Z M, ZHANG Y CH, CEN G, et al.. Estimating method of detecting minimum pollutant gas concentration by Lidar[J]. Acta Optica Sinica, 2004, 24(5):602-604. (in Chinese)
HU SH X, HU H L, ZHANG Y CH, et al.. A new differential absorption lidar for NO 2 measurements using Raman-shifted technique[J]. Chinese Optics Letters, 2003, 1(8):435-437.
刘秋武, 王晓宾, 陈亚峰, 等.基于染料激光器的差分吸收激光雷达探测大气NO 2 浓度[J].光学学报, 2017, 37(4):428004.
LIU Q W, WANG X B, CHEN Y F, et al.. Detection of atmospheric NO 2 concentration by differential absorption Lidar based on dye lasers[J]. Acta Optica Sinica, 2017, 37(4):428004. (in Chinese)
林金明, 曹开法, 胡顺星, 等.差分吸收激光雷达探测二氧化硫实验研究[J].红外与激光工程, 2015, 44(3):872-878.
LIN J M, CAO K F, HU SH X, et al.. Experiment study of SO 2 measurement by differential absorption lidar[J]. Infrared and Laser Engineering, 2015, 44(3):872-878. (in Chinese)
孙景群.激光大气探测[M].北京:科学出版社, 1986.
SUN J Q. Lidar Atmospheric Detection[M]. Beijing:Science Press, 1986. (in Chinese)
阎吉祥, 龚顺生, 刘智深.环境监测激光雷达[M].北京:科学出版社, 2001.
YAN J X, GONG SH SH, LIU ZH SH. Environment Monitoring Lidar[M]. Beijing:Science Press, 2001. (in Chinese)
VOIGT S, ORPHAL J, BURROWS J P. The temperature and pressure dependence of the absorption cross-sections of NO 2 in the 250-800 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 149(1-3):1-7.
SCHOTLAND R M. Errors in the Lidar measurement of atmospheric gases by differential absorption[J]. Journal of Applied Meteorology, 1974, 13(1), 71-77.
杨子健, 陈锋, 李抄, 等.微脉冲激光雷达中的光子计数死区时间瞬态效应[J].光学 精密工程, 2015, 23(2):408-414.
YANG Z J, CHEN F, LI CH, et al.. Transient effect of dead time of photon-counting in micro-pulse lidar[J]. Opt. Precision Eng., 2015, 23(2):408-414. (in Chinese)
FUKUCHI T, NAYUKI T, CAO N W, et al.. Differential absorption lidar system for simultaneous measurement of O 3 and NO 2 :system development and measurement error estimation[J]. Optical Engineering. 2003, 42(1):98 -104.
0
浏览量
561
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构