浏览全部资源
扫码关注微信
1.宁波大学 高等技术研究院 红外材料及器件实验室, 浙江 宁波 315211
2.湖北新华光信息材料有限公司, 湖北 襄阳 441000
3.浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
[ "刘永兴(1987-), 男, 湖北利川人, 博士研究生, 2010年、2013年于宁波大学分别获得学士、硕士学位, 主要从事新型红外光子器件方面的研究。E-mail:liuyongxing@nbu.edu.cn" ]
收稿日期:2017-06-27,
录用日期:2017-8-22,
纸质出版日期:2018-02-25
移动端阅览
刘永兴, 张培晴, 吴越豪, 等. 角度位置自动识别的红外折射率测量[J]. 光学 精密工程, 2018,26(2):300-306.
Yong-xing LIU, Pei-qing ZHANG, Yue-hao WU, et al. Measurement of infrared refractive index based on angle location automatic recognition[J]. Optics and precision engineering, 2018, 26(2): 300-306.
刘永兴, 张培晴, 吴越豪, 等. 角度位置自动识别的红外折射率测量[J]. 光学 精密工程, 2018,26(2):300-306. DOI: 10.3788/OPE.20182602.0300.
Yong-xing LIU, Pei-qing ZHANG, Yue-hao WU, et al. Measurement of infrared refractive index based on angle location automatic recognition[J]. Optics and precision engineering, 2018, 26(2): 300-306. DOI: 10.3788/OPE.20182602.0300.
为准确快速获得块体硫系玻璃红外波段的折射率,搭建了基于类准直测量法的折射率测量系统。该系统采用液氮制冷的碲镉汞探测器和特殊的光路实现了光强信息的高分辨采集,使用高分辨数据采集卡将角度信息数字化,利用精密步进电机传动控制系统实现了光强信号与位置信号的同步记录。开发的测量软件可自动判别光强峰位信息,自动计算获得待测样品的折射率。对比测试Ge
20
Sb
15
Se
65
、Ge
28
Sb
12
Se
60
、As
2
S
3
和As
2
Se
3
商用硫系玻璃在3.39
μ
m和4.8
μ
m处的折射率。实验结果表明,该装置系统测量折射率的标准偏差为10
-3
,测量不确定度为0.002 9,可快速、准确测量块体材料红外波段的折射率。
In order to determine the refractive index of bulk glasses in the infrared band
a refractive index measurement system based on the optical auto-collimation principle is proposed. We use a liquid-nitrogen-cooled mercury telluride detector and a special optical architecture to collect high-resolution light intensity information. The angle information is converted to digital information by a data acquisition card. A precision stepper motor drive control system is used to synchronize the light intensity signal and the position signal. The software automatically determines the peak position of the light intensity
and automatically calculates the refractive index of the sample. The refractive indices of the Ge
20
Sb
15
Se
65
Ge
28
Sb
12
Se
60
As
2
S
3
and As
2
Se
3
commercial chalcogenide glasses were measured at 3.39
μ
m and 4.8
μ
m. The standard deviation of the refractive index measurement system is 10
-3
with a measurement uncertainty of 0.002 9. The system can be useful to quickly and accurately measure the refractive index of bulk materials in the infrared band.
余怀之.红外光学材料[M].北京:国防工业出版社, 2007.
YU H ZH. Infrared Optical Material[M]. Beijing:National Defense Industry Press, 2007. (in Chinese)
戴世勋, 林常规, 沈祥, 等.红外硫系玻璃及其光子器件[M].北京:科学出版社, 2017.
DAI SH X, LIN CH G, SHEN X, et al.. Infrared Chalcogenide Glass and Photonic Device[M]. Beijing:Science Press, 2017. (in Chinese)
DAIMON M, MASUMURA A. High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm[J]. Applied Optics, 2002, 41(25):5275-5281.
李锡善, 孙保定, 孙晶矾, 等.自动V棱镜折射仪[J].仪器仪表学报, 1995, 13(2):113-120.
LI X SH, SUN B D, SUN J F, et al.. Automatic vee-block prism refractometer[J]. Chinese Journal of Scientific Instrument, 1995, 13(2):113-120. (in Chinese)
陈振强, 张戈, 沈鸿元, 等.绿宝石激光晶体的主折射率及其温度系数的精确测量[J].中国激光, 2003, 30(9):843-846.
CHEN ZH Q, ZHANG G, SHEN H Y, et al.. Measurement of principal refractive indices and expression of thermal refractive index coefficients of emerald laser crystal[J]. Chinese Journal of Lasers, 2003, 30(9):843-846. (in Chinese)
HUANG ZH M, CHU J H. The refractive index dispersion of Hg 1- x Cd x Te by infrared spectroscopic ellipsometry[J]. Infrared Physics & Technology, 2001, 42(2):77-80.
魏仁选, 姜德生.基于F-P干涉波长的折射率测量[J].中国激光, 2003, 30(6):551-554.
WEI R X, JIANG D SH. Refractive index measurement with Fabry-Perot interference wavelength[J]. Chinese Journal of Lasers, 2003, 30(6):551-554. (in Chinese)
BHATTACHARYA J C. Refractive index measurement[J]. Optics & Laser Technology, 1987, 19(1):29-32.
孟庆华, 向阳.高精度测量光学玻璃折射率的新方法[J].光学 精密工程, 2008, 16(11):2114-2119.
MENG Q H, XIANG Y. Novel high accurate measurement method for refractive index of optical glass[J]. Opt. Precision Eng., 2008, 16(11):2114-2119. (in Chinese)
KLLEV I K, KUMAGAI H, TOYODA K. A fiber-optic autocollimation refractometric method for dispersion measurement of bulk optical materials using a widely tunable fiber Raman laser[J]. IEEE Journal of Quantum Electronics, 1996, 32(11):1897-1902.
TALIM S P. Measurement of the refractive index of a prism by a critical angle method[J]. Optica Acta:International Journal of Optics, 1978, 25(2):157-165.
闫俊岑, 车英, 耿树彬.基于新数学模型的自动对准式色散系数测量系统[J].红外与激光工程, 2015, 44(9):2858-2862.
YAN J C, CHE Y, GENG SH B. Dispersion coefficient measuring system of automatic alignment based on novel mathematical model[J]. Infrared and Laser Engineering, 2015, 44(9):2858-2862. (in Chinese)
SANGHERA J S, SHAW L B, AGGARWAL I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1):114-119.
孙杰, 聂秋华, 戴世勋, 等. OH-对Er 3+ 掺杂Ge-Ga-S-CsI玻璃中红外荧光特性的影响[J].无机材料学报, 2011, 26(8):836-840.
SUN J, NIE Q H, DAI SH X, et al.. Effect of OH-content on mid-infrared emission properties in Er 3+ -doped Ge-Ga-S-CsI glasses[J]. Journal of Inorganic Materials, 2011, 26(8):836-840. (in Chinese)
王雷, 王生云, 侯西旗, 等.红外光学材料参数测试[J].应用光学, 2001, 22(6):40-42.
WANG L, WANG SH Y, HOU X Q, et al.. Parameter measurement for infrared optical materials[J]. Journal of Applied Optics, 2001, 22(6):40-42. (in Chinese)
崔琳哲, 李书平, 康俊勇.基于LabVIEW的外延片光致发光扫描系统[J].光子学报, 2012, 41(7):790-793.
CUI L ZH, LI SH P, KANG J Y. Mapping of the epitaxial wafer system based on Labview[J]. Acta Photonica Sinica, 2012, 41(7):790-793. (in Chinese)
0
浏览量
549
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构