浏览全部资源
扫码关注微信
1.清华大学 摩擦学国家重点实验室 机械工程系, 北京 100084
2.天津大学 机械工程学院, 天津 300072
[ "果晓东(1990-), 男, 河北秦皇岛人, 博士研究生, 主要从事仿生变体头锥的研究。E-mail:gxd13@mails.tsinghua.edu.cn" ]
[ "阎绍泽(1964-), 男, 吉林松原人, 教授, 1987年、1990年、1996年于天津大学分别获得学士、硕士、博士学位, 主要从事机械系统动力学、航天动力学与可靠性和智能结构设计与昆虫仿生的研究。E-mail:yansz@mail.tsinghua.edu.cn" ]
收稿日期:2017-09-11,
录用日期:2017-11-1,
纸质出版日期:2018-02-25
移动端阅览
果晓东, 李君兰, 陈炜铧, 等. 基于伞式导杆机构的变体头锥设计与仿真[J]. 光学 精密工程, 2018,26(2):336-343.
Xiao-dong GUO, Jun-lan LI, Wei-hua CHEN, et al. Design and simulation of morphing nose cone for umbrella guide-rod mechanism[J]. Optics and precision engineering, 2018, 26(2): 336-343.
果晓东, 李君兰, 陈炜铧, 等. 基于伞式导杆机构的变体头锥设计与仿真[J]. 光学 精密工程, 2018,26(2):336-343. DOI: 10.3788/OPE.20182602.0336.
Xiao-dong GUO, Jun-lan LI, Wei-hua CHEN, et al. Design and simulation of morphing nose cone for umbrella guide-rod mechanism[J]. Optics and precision engineering, 2018, 26(2): 336-343. DOI: 10.3788/OPE.20182602.0336.
可变体头锥结构是改善空天飞行器气动性能的一种有效途径。为了实现空天飞行器对复杂环境的自适应性,本文基于伞式导杆机构设计了空天飞行器变体头锥结构,探讨了变体头锥的运动特性和运动平稳性。仿真分析了不同驱动方式下头锥变体过程中的运动学特性,得到了影响变体头锥工作性能和系统稳定性的主要因素。分析结果表明,所设计的变体头锥结构伸长量为1 499.6 mm,偏转量为500.7 mm,满足设计要求;与采用匀速运动模式相比,采用正弦运动规律驱动模式,基于伞式导杆机构的变体头锥具有较好的运动特性和运动平稳性。
The morphing nose cone for aerospace vehicle will provide a novel way for improving aerodynamic performance of reentry vehicle. In order to realize adaptability of the aerospace vehicle to the complex environment
a morphing nose cone of aerospace vehicle was presented by using a series of umbrella guide-rod mechanisms
and its kinematic characteristics and system stability were analyzed. Kinematic simulation analysis of the morphing nose cone under different driving modes was carried out to find out the influence of the main factors on its operation performance and system stability. Simulation results showed that the elongation and the deflection of the morphing nose cone were 1 499.6 mm and 500.7 mm
respectively
which meet the requirements of design. Comparing with driving mode of the constant speed
driving mode of the sinusoidal motion can makes the morphing nose cone running more stable.
RYOJIRO A. Fundamental aspects of an aerospaceplane[C]. Proceedings of the 16th International Symposium on Space Technology and Science, AGNE Publishing, Inc., 1988, 2: 1521-1526.
邓英, 朱大明.空天飞行器及动力技术发展研究[J].燃气涡轮试验与研究, 2013, 26(1):47-52.
DENG Y, ZHU D M. Aerospace vehicle and propulsion development[J]. Gas Turbine Experiment and Research, 2013, 26(1):47-52. (in Chinese)
陆宇平, 何真, 吕毅.变体飞行器技术[J].航空制造技术, 2008(22):26-29.
LU Y P, HE ZH, Lü Y. Morphing aircraft technology[J]. Aeronautical Manufacturing Technology, 2008(22):26-29. (in Chinese)
贺媛媛, 王博甲.国外变形飞行器的研究现状[J].飞航导弹, 2013(10):49-55.
HE Y Y, WANG B J. The foreign research of morphing aircraft[J]. Aerodynamic Missile Journal, 2013(10):49-55. (in Chinese)
冷劲松. 国内外可变形飞行器的发展[C]. 智能可变形飞行器发展前景及我们的选择——新观点新学说学术沙龙文集(32), 中国航空学会, 2009: 19-20. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHU200906001006.htm
LENG J S. The domestic and foreign development of morphing aircraft[C]. The Prospect of the Development of Intelligent Morphing Aircraft and Our Choice-New Views and New Theories of Academic Salon Anthology(32), Chinese Society of Aeronautics and Astronautics, 2009: 19-20. (in Chinese)
温杰.探索21世纪的机翼NASA的主动气动弹性机翼计划[J].国际航空, 2004(10):61-62.
WEN J. NASA's active aeroelastic wing program[J]. International Aviation, 2004(10):61-62. (in Chinese)
WLEZIEN R W, HORNER G C, MCGOWAN A M R, et al.. Aircraft morphing program[J]. SPIE, 1998, 3326:176-187.
MONNER H P, HANSELKA H, BREITBACH E J. Development and design of flexible fowler flaps for an adaptive wing[C]. SPIE, 1998, 3326: 60-70.
WU J N, YAN SH Z, LI J L, et al.. Mechanism reliability of bistable compliant mechanisms considering degradation and uncertainties:modeling and evaluation method[J]. Applied Mathematical Modelling, 2016, 40(23-24):10377-10388.
WU J N, YAN S, GU Y X. On stability optimization of the deployable bistable compliant structures mounted in the morphing skin:Method and implementation[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 229(5):943-956.
WU J N, LI J L, YAN SH Z. Design of deployable bistable structures for morphing skin and its structural optimization[J]. Engineering Optimization, 2014, 46(6):745-762.
刘源, 肖任勤, 韩德东, 等.飞行器主承力结构的轻量化设计[J].光学 精密工程, 2015, 23(11):3083-3089.
LIU Y, XIAO R Q, HAN D D, et al.. Lightweight design of primary force-taking structures for spacecrafts[J]. Opt. Precision Eng., 2015, 23(11):3083-3089. (in Chinese)
ERICSSON L E, GUENTHER R A, STAKE W R, et al.. Combined effects of nose bluntness and cone angle on unsteady aerodynamics[J]. AIAA Journal, 1974, 12(5):729-732.
DEEPAK N R, RAY T, BOYCE R R. Evolutionary algorithm shape optimization of a hypersonic flight experiment nose cone[J]. Journal of Spacecraft and Rockets, 2008, 45(3):428-437.
LI J L, WU J N, YAN SH Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2015, 2013:590957.
ZHAO J L, YAN SH Z, DENG L R, et al.. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2):317-326.
0
浏览量
452
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构