浏览全部资源
扫码关注微信
1.北京航空航天大学 惯性技术重点实验室 新型惯性仪表与导航系统技术国防重点学科实验室, 北京 100191
2.北京市高速磁悬浮电机技术及应用工程技术研究中心, 北京 100191
3.北京信息科技大学 仪器科学与光电工程学院, 北京 100192
[ "王坤(1982-), 男, 黑龙江伊春人, 博士, 硕士生导师, 2007年、2011年于北京航空航天大学分别获得硕士、博士学位, 主要从事精密仪器与机械设计、主动磁悬浮轴承设计、高速电机设计与仿生爬壁机器人的研究。E-mail:wangkunggg@163.com" ]
[ "张利胜(1993-),男,河北石家庄人,硕士研究生,2015年于燕山大学获得学士学位,主要从事磁悬浮轴承控制与磁悬浮轴承用位移传感器的研究。E-mail: guitarprozls@163.com" ]
收稿日期:2017-08-21,
录用日期:2017-10-9,
纸质出版日期:2018-02-25
移动端阅览
王坤, 张利胜, 陈少华, 等. 磁悬浮分子泵用Hartley涡流传感器[J]. 光学 精密工程, 2018,26(2):344-354.
Kun WANG, Li-sheng ZHANG, Shao-hua CHEN, et al. Hartley eddy current sensor used in maglev molecular pump[J]. Optics and precision engineering, 2018, 26(2): 344-354.
王坤, 张利胜, 陈少华, 等. 磁悬浮分子泵用Hartley涡流传感器[J]. 光学 精密工程, 2018,26(2):344-354. DOI: 10.3788/OPE.20182602.0344.
Kun WANG, Li-sheng ZHANG, Shao-hua CHEN, et al. Hartley eddy current sensor used in maglev molecular pump[J]. Optics and precision engineering, 2018, 26(2): 344-354. DOI: 10.3788/OPE.20182602.0344.
工业领域的磁悬浮分子泵用位移传感器除了要具有良好的静态特性外,还应具有高动态响应特性,同时其体积大小还影响着磁悬浮分子泵的抽速、真空度和压缩比。针对高真空磁悬浮分子泵,提出了一种基于Hartley原理的电涡流位移传感器设计方法,将传感器对称探头接入同一振荡电路作为工作电感。对传感器的动态特性进行了分析,并提出了对其动态响应特性在不影响灵敏度和线性度等静态性能的情况下进行补偿的方法。实验结果表明,在-0.4~0.4 mm内,传感器的线性度为±1.17%,灵敏度为9.901 mV/
μ
m,分辨率为0.25%,动态响应带宽达到了10.2 kHz,两径向四路位移信号测量集成电路板体积仅为π×4
2
cm
2
,大大减小了传感器体积,满足了磁悬浮分子泵面向更高抽速和更高真空度的发展需求。
For the displacement sensor used in maglev molecular pump in the industrial field
in addition to good static characteristic and high dynamic characteristic requirements
its volume also affects the pumping speed
the vacuum and the compression ratio of the maglev molecular pump. Aiming at the high-vacuum maglev molecular pump
a design method of the eddy current displacement sensor (ECDS) based on the Hartley oscillator was proposed. The symmetrical probes were connected into the same oscillation circuit as working inductors. Then the dynamic characteristic of the ECDS was analyzed in detail. And a method to compensate the response bandwidth without affecting the sensitivity and the linearity was put forward. Experimental results indicated that in the measurement range of -0.4-0.4 mm
the linearity came to ±1.17% and the sensitivity achieved 9.901 mV/
μ
m
the resolution was ±0.25% and the response bandwidth was 10.2 kHz. The volume of the integrated circuit board of the two radial four-way displacement signal was only π×4
2
cm
2
which greatly reduced the sensor volume. It can satisfy the requirements of the maglev molecular pump for higher pumping speed and higher vacuum.
韩邦成, 王凯, 郑世强, 等.磁悬浮高速离心式鼓风机的喘振检测[J].光学 精密工程, 2017, 25(4):910-918.
HAN B CH, WANG K, ZHENG SH Q, et al.. Surge detection of magnetically suspended high-speed centrifugal blower[J]. Opt. Precision Eng., 2017, 25(4):910-918. (in Chinese)
谢进进, 刘刚, 文通.双框架磁悬浮控制力矩陀螺磁轴承负载力矩复合补偿的控制[J].光学 精密工程, 2015, 23(8):2211-2219.
XIE J J, LIU G, WEN T. Composite compensation for load torque of active magnetic bearing in DGMSCMG[J]. Opt. Precision Eng., 2015, 23(8):2211-2219. (in Chinese)
ZHENG SH Q, LI H T, HAN B CH, et al.. Power consumption reduction for magnetic bearing systems during torque output of control moment gyros[J]. IEEE Transactions on Power Electronics, 2017, 32(7):5752-5759.
ZHENG SH Q, HAN B CH, GUO L. Composite hierarchical antidisturbance control for magnetic bearing system subject to multiple external disturbances[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12):7004-7012.
崔培玲, 盖玉欢, 房建成, 等.主被动磁悬浮转子的不平衡振动自适应控制[J].光学 精密工程, 2015, 23(1):122-131.
CUI P L, GE Y H, FANG J CH, et al.. Adaptive control for unbalance vibration of active-passive hybrid magnetically suspended rotor[J]. Opt. Precision Eng., 2015, 23(1):122-131. (in Chinese)
韩邦成, 薛庆昊, 刘旭.高速磁悬浮永磁电机多物理场分析及转子损耗优化[J].光学 精密工程, 2017, 25(3):680-688.
HAN B CH, XUE Q H, LIU X. Multi-physics analysis and rotor loss optimization of high-speed magnetic suspension PM machine[J]. Opt. Precision Eng., 2017, 25(3):680-688. (in Chinese)
ZHOU L, LI L CH. Modeling and identification of a solid-core active magnetic bearing including eddy currents[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6):2784-2792.
MORIYA T, SUGAWARA E, MATSUI H. Observation and elimination of recoil particles from turbo molecular pumps[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(3):253-259.
KOBAYASHI H, MAEDA K, IZAWA M. Behavior of particles reflected by turbo molecular pump in plasma etching apparatus[J]. IEEE Transactions on Semiconductor Manufacturing, 2009, 22(4):462-467.
SUN J J, WANG CH E, LE Y. Designing and experimental verification of the axial hybrid magnetic bearing to stabilization of a magnetically suspended inertially stabilized platform[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6):2881-2891.
FANG J CH, ZHENG SH Q, HAN B CH. AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):32-43.
周红海. 分子泵磁悬浮轴承结构及功率放大器设计[D]. 哈尔滨: 哈尔滨工业大学, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D276681
ZHOU H H. Design of Magnetic Bearing Structure and Power Amplifier for Molecular Pump[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
CHATURVEDI V, NABAVI M R, VOGEL J, et al.. Demodulation techniques for self-oscillating eddy-current displacement sensor interfaces:A review[J]. IEEE Sensors Journal, 2017, 17(9):2617-2624.
NABAVI M R, NIHTIANOV S N. Design strategies for eddy-current displacement sensor systems:Review and recommendations[J]. IEEE Sensors Journal, 2012, 12(12):3346-3355.
刘强, 房建成, 韩邦成.磁悬浮飞轮锁紧保护效果的检测[J].光学 精密工程, 2015, 23(1):157-164.
LIU Q, FANG J CH, HAN B CH. Detection of locking protection effect for magnetic bearing flywheel[J]. Opt. Precision Eng., 2015, 23(1):157-164. (in Chinese)
VYROUBAL D. Eddy-current displacement transducer with extended linear range and automatic tuning[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9):3221-3231.
NABAVI M R, PERTIJS M A P, NIHTIANOV S. An interface for eddy-current displacement sensors with 15-bit resolution and 20 MHz excitation[J]. IEEE Journal of Solid-State Circuits, 2013, 48(11):2868-2881.
DEVER T P, PALAZZOLO A B, THOMAS Ⅲ E M, et al. . Evaluation and improvement of eddy current position sensors in magnetically suspended flywheel system[C]. 36th Intersociety Conversion Engineering Conference, NASA, 2001.
LARSONNEUR R, BVHLER P. New radial sensor for active magnetic bearings[C]. Proceedings of the Ninth International Symposium on Magnetic Bearings, Lexington, Kentucky, 2004.
NABAVI M R, NIHTIANOV S. Eddy-current sensor interface for advanced industrial applications[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9):4414-4423.
ZHENG SH Q, WANG Y G, REN H L. Simultaneous temperature compensation and synchronous error elimination for axial displacement sensors using an auxiliary probe[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3179-3186.
张倩. 磁悬浮飞轮用电涡流位移传感器特性分析与研究[D]. 北京: 北京航空航天大学仪器科学与光电工程学院, 2007.
ZHANG Q. Characteristics Study on Eddy Current Displacement Sensor for Magnetically Suspended Flywheel[D]. Beijing: School of Instrument Science and Opto-Electronics Engineering Beijing University of Aeronautics and Astronautics, 2007. (in Chinese)
樊树江, 李璐, 吴峻, 等.新型电涡流传感器的动态响应分析[J].传感器技术, 2004, 23(3):21-24.
FAN SH J, LI L, WU J, et al.. Analysis on dynamic response of new eddy current sensor[J]. Journal of Transducer Technology, 2004, 23(3):21-24. (in Chinese)
OBERLE M, REUTEMANN R, HERTLE R, et al.. A 10-mW two-channel fully integrated system-on-chip for eddy-current position sensing[J]. IEEE Journal of Solid-State circuits, 2002, 37(7):916-925.
0
浏览量
441
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构