浏览全部资源
扫码关注微信
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室, 浙江 杭州 310014
[ "计时鸣(1957-), 男, 浙江温州人, 博士, 教授, 博士生导师, 1982年于浙江工学院获得学士学位, 1994年于浙江工业大学获得硕士学位, 2000年于浙江大学获得博士学位, 主要从事精密与超精密加工技术、计算机视觉与图像处理、汽车电子工程等方面研究。E-mail: jishiming@zjut.edu.cn" ]
[ "谭大鹏(1980-), 男, 山东淄博人, 博士, 教授, 博士生导师, 2002年于山东农业大学获得学士学位, 2008年于浙江大学获得博士学位, 主要从事工业检测技术、超精密加工等方面研究。E-mail:tandapeng@zjut.edu.cn" ]
收稿日期:2017-05-26,
录用日期:2017-7-8,
纸质出版日期:2018-02-25
移动端阅览
计时鸣, 葛江勤, 谭大鹏, 等. 三相磨粒流抛光及其气泡溃灭分布特性[J]. 光学 精密工程, 2018,26(2):388-398.
Shi-ming JI, Jiang-qin GE, Da-peng TAN, et al. Three-phase abrasive flow polishing and distribution characteristics of bubble collapse[J]. Optics and precision engineering, 2018, 26(2): 388-398.
计时鸣, 葛江勤, 谭大鹏, 等. 三相磨粒流抛光及其气泡溃灭分布特性[J]. 光学 精密工程, 2018,26(2):388-398. DOI: 10.3788/OPE.20182602.0388.
Shi-ming JI, Jiang-qin GE, Da-peng TAN, et al. Three-phase abrasive flow polishing and distribution characteristics of bubble collapse[J]. Optics and precision engineering, 2018, 26(2): 388-398. DOI: 10.3788/OPE.20182602.0388.
针对软性磨粒流在加工硬脆性材料时效率低下的问题,本文提出一种气-液-固三相磨粒流加工方法。该方法通过在加工流场内注入微尺度气泡群,利用气泡溃灭释放的能量提升磨粒流加工能力。基于计算流体力学和群体平衡模型耦合计算方法,建立气-液-固三相磨粒流流体力学模型,数值模拟结果揭示了工件表面三相磨粒流形成高速湍流涡旋流场加工特性,得到了工件表面气泡溃灭的分布规律,并探明流体黏度与气泡溃灭之间的关系。图像粒子测速实验表明,通入微尺度气泡群后,平均速度从12.50~13.50 m/s提升至15.00~17.00 m/s,最高平均速度可达20.00 m/s以上。对比加工实验显示,经8 h加工后,粗糙度从0.50
μ
m降低到0.05
μ
m。理论和实验研究结果说明借助微尺度气泡群的溃灭效应可有效提升软性磨粒流的加工效率和加工精度。
To resolve the low processing efficiency of softness abrasive flow method (SAF) for hard brittle materials
a gas-liquid-solid three-phase abrasive flow processing method (GLSP) was proposed. Through injecting the micro bubbles into processing flow field and by means of the bubble collapse energy
the processing capability of abrasive flow could be strengthened. The fluid mechanics model of GLSP was established based on computational fluid dynamics-population balance model (CFD-PBM) coupled method. The simulation results revealled the dynamic characteristics of the high-speed turbulent vortex flow field formed by the gas-liquid-solid three-phase abrasive flow
and the bubble collapse distribution could be obtained
furthermore
the effect of fluid viscosity on bubble collapse was analyzed. The results of particle image velocimetry show that through injecting micro bubbles
the average velocity could be increased from 12.50-13.50 m/s to 15.00-17.00 m/s
and the maximum value could reach above 20.00 m/s. The comparison processing experiments showed that the roughness increased from 0.09
μ
m to 0.05
μ
m after 8 h processing. The above results indicate that the effect of bubble collapse can effectively improve the processing efficiency and precision of SAF method.
BEAUCAMP A, NAMBA Y. Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing[J]. CIRP Annals, 2013, 62(1):315-318.
荆君涛, 冯平法, 魏士亮, 等. Si 3 N 4 陶瓷旋转超声磨削加工的表面摩擦特性[J].光学 精密工程, 2015, 23(11):3200-3210.
JING J T, FENG P F, WEI SH L, et al.. Surface friction characteristics of Si 3 N 4 ceramics machined by rotary ultrasonic grinding[J]. Opt. Precision Eng., 2015, 23(11):3200-3210. (in Chinese)
白杨, 张峰, 李龙响, 等.碳化硅基底改性硅表面的磁流变抛光[J].光学学报, 2015, 35(3):0322007.
BAI Y, ZHANG F, LI L X, et al.. Manufacture of silicon modification layer on silicon carbide surface by magnetorheological finishing[J]. Acta Optica Sinica, 2015, 35(3):0322007. (in Chinese)
朱永伟, 李信路, 王占奎, 等.光学硬脆材料固结磨料研磨中的亚表面损伤预测[J].光学 精密工程, 2017, 25(2):367-374.
ZHU Y W, LI X L, WANG ZH K, et al.. Subsurface damage prediction for optical hard-brittle material in fixed abrasive lapping[J]. Opt. Precision Eng., 2017, 25(2):367-374. (in Chinese)
许亮, 李创, 樊学武.光学窗口形变对平行光管光学性能影响分析[J].应用光学, 2010, 31(6):914-917.
XU L, LI CH, FAN X W. Deformation of optical window and its influence on collimator's optical performance[J]. Journal of Applied Optics, 2010, 31(6):914-917. (in Chinese)
石峰, 万稳, 戴一帆, 等.磁流变抛光对熔石英激光损伤特性的影响[J].光学 精密工程, 2016, 24(12):2931-2937.
SHI F, WAN W, DAI Y F, et al.. Effect of magnetorheological finishing on laser damage properties of fused silica[J]. Opt. Precision Eng., 2016, 24(12):2931-2937. (in Chinese)
KANAOKA M, TAKINO H, NOMURA K, et al.. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining[J]. Science and Technology of Advanced Materials, 2007, 8(3):170-172.
JAIN V K, ADSUL S G. Experimental investigations into abrasive flow machining (AFM)[J]. International Journal of Machine Tools and Manufacture, 2000, 40(7):1003-1021.
STRNADEL B, HLAVÁ L M, GEMBALOVÁ L. Effect of steel structure on the declination angle in AWJ cutting[J]. International Journal of Machine Tools and Manufacture, 2013, 64:12-19.
WANG T, CHENG H B, CHEN Y, et al.. Multiplex path for magnetorheological jet polishing with vertical impinging[J]. Applied Optics, 2014, 53(10):2012-2019.
计时鸣, 李琛, 谭大鹏, 等.基于Preston方程的软性磨粒流加工特性[J].机械工程学报, 2011, 47(17):156-163.
JI SH M, LI CH, TAN D P, et al.. Study on machinability of softness abrasive flow based on Preston equation[J]. Journal of Mechanical Engineering, 2011, 47(17):156-163. (in Chinese)
ZHANG L, DENG B, XIE Y, et al.. Curved surface turbulence precision machining method for artificial joint complex of titanium alloy[J]. Materials Research Innovations, 2015, 19(S8):S8-55-S8-59.
TAN D P, JI SH M, FU Y ZH. An improved soft abrasive flow finishing method based on fluid collision theory[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8):1261-1274.
LI CH, JI SH M, TAN D P. Softness abrasive flow method oriented to tiny scale mold structural surface[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(9-12):975-987.
王含. 气泡行为的数值研究[D]. 上海: 复旦大学, 2010.
WANG H. Numerical Investigation of Bubble Behavior[ D]. Shanghai: Fudan University, 2010. (in Chinese)
NI B Y, ZHANG A M, WANG Q X, et al.. Experimental and numerical study on the growth and collapse of a bubble in a narrow tube[J]. Acta Mechanica Sinica, 2012, 28(5):1248-1260.
徐琰, 董海峰, 田肖, 等.鼓泡塔中离子液体-空气两相流的CFD-PBM耦合模拟[J].化工学报, 2011, 62(10):2699-2706.
XU Y, DONG H F, TIAN X, et al.. CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column[J]. CIESC Journal, 2011, 62(10):2699-2706. (in Chinese)
LUO H A, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5):1225-1233.
0
浏览量
312
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构