浏览全部资源
扫码关注微信
中国科学院 西安光学精密机械研究所, 陕西 西安 710119
[ "吴银花(1984-), 女, 吉林延吉人, 博士后, 2007年于吉林大学获得学士学位, 2012年于中国科学院大学院获得博士学位, 主要从事高光谱数据处理和高光谱成像技术方面的研究。E-mail:yinhuawoo@163.com" ]
收稿日期:2017-05-27,
录用日期:2017-7-21,
纸质出版日期:2018-02-25
移动端阅览
吴银花, 高晓惠, 周安安. 利用区域增长技术的自适应高光谱图像分类[J]. 光学 精密工程, 2018,26(2):426-434.
Yin-hua WU, Xiao-hui GAO, An-an ZHOU. Adaptive hyperspectral image classification using region-growing techniques[J]. Optics and precision engineering, 2018, 26(2): 426-434.
吴银花, 高晓惠, 周安安. 利用区域增长技术的自适应高光谱图像分类[J]. 光学 精密工程, 2018,26(2):426-434. DOI: 10.3788/OPE.20182602.0426.
Yin-hua WU, Xiao-hui GAO, An-an ZHOU. Adaptive hyperspectral image classification using region-growing techniques[J]. Optics and precision engineering, 2018, 26(2): 426-434. DOI: 10.3788/OPE.20182602.0426.
针对面向对象的高光谱分类方法中分割参数设置问题,提出了一种基于区域增长技术的自适应高光谱分类算法。首先提出了带约束的区域增长方法,利用已知训练样本的空间信息,提供有效约束,从而降低区域增长过程中区域标记的错误传播率,以提高分类性能;其次,提出了自适应阈值计算方法,通过分析已知训练样本光谱的分布规律,自适应地计算出合理的区域划分阈值,从而代替经验阈值,提高算法的鲁棒性;最后,采用K近邻算法(KNN),对划分后各区域中心进行分类。实验结果表明:对于不同图像,提出的算法计算出的自适应阈值均与其经验值相符合,且其分类效果优于其他算法,来自AVIRIS传感器的高光谱数据Indian Pines在10%的已知训练样本下总体分类精度达92.94%、kappa系数达0.919 5,来自ROSIS传感器的高光谱数据Pavia University在5%的已知训练样本下总体分类精度达95.78%、kappa系数达0.944 0。该算法不仅增强了算法的鲁棒性,同时有效提高了分类性能,在高光谱应用中具有较强的实用性。
Aiming at the problem of segmentation parameters setting in object-oriented hyperspectral classification method
an adaptive hyperspectral classification algorithm based on region-growing techniques was proposed in this paper. Firstly
a constrained region-growing method was proposed
which used the spatial information of the training samples to provide effective constraints
thus reducing the error propagation rate of the region markers in the region-growing process
and improving classification performance. Secondly
an adaptive threshold calculation method was proposed. By analyzing the distribution law of the spectrum of the training samples
the reasonable threshold for region division was calculated adaptively to replace the empirical threshold
so that the robustness of the algorithm was improved. Finally
the K-nearest neighbor algorithm (KNN) was used to classify the centers of each region after division. Experimental results show that:For different images
the adaptive thresholds calculated by the method are consistent with the empirical values
and the classification effect of the proposed algorithm is better than other algorithms. For hyperspectral data Indian Pines from AVIRIS sensor
the overall classification accuracy and kappa are 92.94% and 0.919 5 respectively with 10% training samples
and for hyperspectral data Pavia University from ROSIS sensor
the overall classification accuracy and kappa are 95.78% and 0.944 0 respectively with 5% training samples. The proposed algorithm not only enhances the robustness of the algorithm
but also improves the classification performance effectively
and has strong practicability in hyperspectral applications.
张成业, 秦其明, 陈理, 等.高光谱遥感岩矿识别的研究进展[J].光学 精密工程, 2015, 23(8):2407-2418.
ZHANG CH Y, QIN Q M, CHEN L, et al.. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Opt. Precision Eng., 2015, 23(8):2407-2418. (in Chinese)
JIAO Q J, ZHANG B, LIU J G, et al.. A novel two-step method for winter wheat-leaf chlorophyll content estimation using a hyperspectral vegetation index[J]. International Journal of Remote Sensing, 2014, 35(21):7363-7375.
鲍一丹, 陈纳, 何勇, 等.近红外高光谱成像技术快速鉴别国产咖啡豆品种[J].光学 精密工程, 2015, 23(2):349-355.
BAO Y D, CHEN N, HE Y, et al.. Rapid identification of coffee bean variety by near infrared hyperspectral imaging technology[J]. Opt. Precision Eng., 2015, 23(2):349-355. (in Chinese)
龚小进, 王刚, 欧中华, 等.高光谱成像技术在生物医学中的应用[J].激光生物学报, 2016, 25(4):289-314.
GONG X J, WANG G, OU ZH H, et al.. The application of hyperspectral imaging technique in biomedicine[J]. Acta Laser Biology Sinica, 2016, 25(4):289-314. (in Chinese)
张兵.高光谱图像处理与信息提取前沿[J].遥感学报, 2016, 20(5):1062-1090.
ZHANG B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090. (in Chinese)
RICHARDS J A, JIA X P. Remote Sensing Digital Image Analysis: an Introduction [M]. 4th ed. Berlin: Springer Verlag, 2006.
DU P J, TAN K, XING X S. A novel binary tree support vector machine for hyperspectral remote sensing image classification[J]. Optics Communications, 2012, 285(13-14):3054-3060.
郭文川, 董金磊.高光谱成像结合人工神经网络无损检测桃的硬度[J].光学 精密工程, 2015, 23(6):1530-1537.
GUO W CH, DONG J L. Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks[J]. Opt. Precision Eng., 2015, 23(6):1530-1537. (in Chinese)
周志华.机器学习[M].北京:清华大学出版社, 2016.
ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016. (in Chinese)
QIAN Y T, YE M C, ZHOU J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2276-2291.
唐中奇, 付光远, 陈进, 等.基于多尺度分割的高光谱图像稀疏表示与分类[J].光学 精密工程, 2015, 23(9):2708-2714.
TANG ZH Q, FU G Y, CHEN J, et al.. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Opt. Precision Eng., 2015, 23(9):2708-2714. (in Chinese)
耿修瑞, 张霞, 陈正超, 等.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报, 2004, 23(4):299-302.
GENG X R, ZHANG X, CHEN ZH CH, et al.. Classification algorithm based on spatial continuity for hyperspectral image[J]. Journal of Infrared and Millimeter Waves, 2004, 23(4):299-302. (in Chinese)
TARABALKA Y, CHANUSSOT J, BENEDIKTSSON J A. Segmentaion and classification of hyperspectral images using watershed transformation[J]. Patter Recognition, 2010, 43(7):2367-2379.
LI S S, JIA X P, ZHANG B. Superpixel-based Markov random field for classification of hyperspectral images[C]. Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, IEEE , 2013, 3491-3493.
FANG L Y, LI S T, KANG X D, et al. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4186-4201.
黄鸿, 郑新磊.加权空-谱与最近邻分类器相结合的高光谱图像分类[J].光学 精密工程, 2016, 24(4):873-881.
HUANG H, ZHENG X L. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Opt. Precision Eng., 2016, 24(4):873-881. (in Chinese)
0
浏览量
381
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构