浏览全部资源
扫码关注微信
东南大学 电子科学与工程学院 信息显示与可视化国际合作实验室, 江苏 南京 210096
[ "陈广甸(1993-), 男, 江苏盐城人, 2015年于湖南科技大学获得学士学位, 主要从事等离激元微纳光电器件的研究。E-mail:gd_chen@seu.edu.cn" ]
收稿日期:2017-09-28,
录用日期:2017-10-22,
纸质出版日期:2018-03-25
移动端阅览
陈广甸, 翟雨生, 李裕培. 基于等离激元热电子效应的光电晶体管制备及其特性[J]. 光学 精密工程, 2018,26(3):517-522.
Guang-dian CHEN, Yu-sheng ZHAI, Yu-pei LI. Fabrication and properties of plasmonic hot-electron phototransistor[J]. Optics and precision engineering, 2018, 26(3): 517-522.
陈广甸, 翟雨生, 李裕培. 基于等离激元热电子效应的光电晶体管制备及其特性[J]. 光学 精密工程, 2018,26(3):517-522. DOI: 10.3788/OPE.20182603.0517.
Guang-dian CHEN, Yu-sheng ZHAI, Yu-pei LI. Fabrication and properties of plasmonic hot-electron phototransistor[J]. Optics and precision engineering, 2018, 26(3): 517-522. DOI: 10.3788/OPE.20182603.0517.
为了解决典型宽禁带半导体光电探测器件的工作波段限制材料禁带宽度的问题,对基于表面等离激元热电子效应的光电晶体管进行了制备和光电性能研究,提出一种采用重掺杂的硅片作为背栅极、二氧化硅(SiO
2
)氧化层作为绝缘层,且能利用等离激元热电子效应的光电晶体管,有望实现响应光谱的调控。利用热退火方法在绝缘层表面修饰金纳米颗粒,并结合射频溅射、物理掩模和真空热蒸镀的方法实现了热电子效应铟镓锌氧化物(IGZO)光电晶体管。器件的光学和电学性能测试结果表明:修饰金纳米颗粒的光电晶体管在658 nm红光入射下产生明显的光电响应,外加90 V栅极偏压时,光电流提升约为2.2倍。金纳米颗粒修饰的等离激元热电子结构有效调控了该型晶体管的响应光谱范围,不受材料禁带宽度的限制,而且晶体管的背栅调控进一步放大光电流,提高了器件的量子效率。
Windows of traditional wide band gap photodetectors are limited by the band gap of the semiconducting material used. In order to address this issue
the photoelectric properties of a plasmonic hot-electron phototransistor were fabricated and investigated. We have developed a plasmonic hot-electron phototransistor using a heavily doped silicon wafer as the back gate and insulating layer. Gold nanoparticles (AuNPs) were fabricated on the surface of the insulator via thermal annealing and the plasmonic hot-electron indium gallium zinc oxide (IGZO) phototransistor was developed. We investigated the optical and electrical properties of the phototransistor. The results revealed that the presence of AuNPs increased the photocurrent by a factor of 2.2 under a gate voltage of 90 V as compared to the IGZO phototransistor without AuNPs. The plasmonic hot-electron structure can effectively adjust the spectral response range of the phototransistor. Regulation of the back gate voltage was observed to amplify the photocurrent and improve the quantum efficiency of the device.
KHAN M A, SHATALOV M, MARUSKA H P, et al.. Ⅲ-nitride UV devices[J]. Japanese Journal of Applied Physics, 2005, 44(10):7191-7206.
KEIS K, VAYSSIERES L, LINDQUIST S E, et al.. Nanostructured ZnO electrodes for photovoltaic applications[J]. Nanostructured Materials, 1999, 12(1-4):487-490.
ZHOU J, GU Y D, HU Y F, et al.. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19):191103.
FANG Y R, JIAO Y, XIONG K L, et al.. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO 2 nanostructures[J]. Nano Letters, 2015, 15(6):4059-4065.
BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 2015, 10(1):25-34.
ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3):205-213.
SHOKRI KOJORI H, YUN J H, PAIK Y, et al.. Plasmon field effect transistor for plasmon to electric conversion and amplification[J]. Nano Letters, 2016, 16(1):250-254.
黎永前, 郭勇君, 苏磊, 等.矩形块微纳结构材料在红外波段的偏振光吸收[J].光学 精密工程, 2014, 22(11):2998-3003.
LI Y Q, GUO Y J, SU L, et al.. Polarization-dependent absorption of rectangular-block metamaterials in infrared region[J]. Opt. Precision Eng., 2014, 22(11):2998-3003. (in Chinese)
MUBEEN S, LEE J, LEE W R, et al.. On the plasmonic photovoltaic[J]. ACS Nano, 2014, 8(6):6066-6073.
CLAVERO C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2):95-103.
KNIGHT M W, SOBHANI H, NORDLANDER P, et al.. Photodetection with active optical antennas[J]. Science, 2011, 332(6030):702-704.
SIL D, GILROY K D, NIAUX A, et al.. Seeing is believing:hot electron based gold nanoplasmonic optical hydrogen sensor[J]. ACS Nano, 2014, 8(8):7755-7762.
CUI J B, LI Y J, LIU L, et al.. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions[J]. Nano Letters, 2015, 15(10):6295-6301.
PESCAGLINI A, MARTíN A, CAMMI D, et al.. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection[J]. Nano Letters, 2014, 14(11):6202-6209.
ZHAN Y H, WU K, ZHANG CH, et al.. Infrared hot-carrier photodetection based on planar perfect absorber[J]. Optics Letters, 2015, 40(18):4261-4264.
刘媛媛, 熊广, 王杨, 等.多谐振U形缝隙纳米天线设计及吸收特性[J].光学 精密工程, 2017, 25(8):2155-2164.
LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Opt. Precision Eng., 2017, 25(8):2155-2164. (in Chinese)
LI W, VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6):3510-3514.
FANG Y R, JIAO Y, XIONG K L, et al.. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO 2 nanostructures[J]. Nano Letters, 2015, 15(6):4059-4065.
WILLETS K A, VAN DUYNE R P. Localized surface Plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58:267-297.
LIU K W, SAKURAI M, LIAO M Y, et al.. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. The Journal of Physical Chemistry C, 2010, 114(46):19835-19839.
0
浏览量
278
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构