浏览全部资源
扫码关注微信
1.中国科学院 合肥物质科学研究院 医学物理与技术中心, 安徽 合肥 230031
2.中国科学技术大学, 安徽 合肥 230026
3.医学物理与技术安徽省重点实验室, 安徽 合肥 230031
4.中国医科大学, 辽宁 沈阳 110001
[ "王燕飞(1984-), 男, 安徽肥东人, 博士研究生, 2006年于合肥工业大学获得学士学位, 主要从事光电检测方面的研究。E-mail:yfw@mail.ustc.edu.cn" ]
[ "徐赤东(1978-), 男, 安徽桐城人, 副研究员, 2007年于西安电子科技大学获得硕士学位, 主要研究方向为微脉冲激光雷达系统研制和激光雷达在大气探测中的应用。E-mail:xcd@aiofm.ac.cn" ]
收稿日期:2017-07-10,
录用日期:2017-9-10,
纸质出版日期:2018-03-25
移动端阅览
王燕飞, 余东升, 陈海燕, 等. 便携式MicroRNA快速检测系统[J]. 光学 精密工程, 2018,26(3):541-547.
Yan-fei WANG, Dong-sheng YU, Hai-yan CHEN, et al. Portable rapid microRNA detection system[J]. Optics and precision engineering, 2018, 26(3): 541-547.
王燕飞, 余东升, 陈海燕, 等. 便携式MicroRNA快速检测系统[J]. 光学 精密工程, 2018,26(3):541-547. DOI: 10.3788/OPE.20182603.0541.
Yan-fei WANG, Dong-sheng YU, Hai-yan CHEN, et al. Portable rapid microRNA detection system[J]. Optics and precision engineering, 2018, 26(3): 541-547. DOI: 10.3788/OPE.20182603.0541.
MicroRNA(miRNA)与疾病的发生和发展密切相关,可作为疾病诊断标志物。常规检测miRNA的方法耗时较长且操作复杂,本文设计了一种便携式miRNA快速检测系统。该系统采用光电检测技术检测滚环扩增后的标志物miRNA受激发出的荧光强度,对采集到的荧光数据进行分析,得出miRNA的变化情况。实验得出便携式miRNA快速检测系统在试剂浓度为0.1~1
μ
mol时,荧光强度线性偏倚不超过±5%,系统重复性大于95%。通过对冠心病检测标志物miR-499进行滚环扩增实验,结果表明设计的便携式miRNA快速检测系统能够快速有效地检测miRNA。
MicroRNA (miRNA) is closely related to the occurrence and development of certain diseases and can be used as a diagnostic marker. Conventional methods for the detection of miRNA are time-consuming and complex. Herein
a portable rapid miRNA detection system was designed. This system records the fluorescence intensity of the marker that is amplified via rolling circle amplification using a photoelectric detection technique
and analyzes the fluorescence data to obtain the changes in miRNA. Through our experiments
we observed that for reagent concentrations in the range 0.1-1
μ
mol
the linearity of the fluorescence intensity detected by the miRNA fluorescence detection equipment was less than ±5%
and the repeatability was ≥ 95%. Our roll amplification experiment involving the coronary heart disease diagnostic marker
miR-499
confirmed that the portable rapid miRNA detection system can detect miRNA quickly and effectively.
CHEN CH ZH, LI L, LODISH H F, et al.. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science, 2004, 303(5654):83-86.
OLSON P, LU J, ZHANG H, et al.. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes & Development, 2009, 23(18):2152-2165.
KOZOMARA A, GRIFFITHS-JONES S. miRBase:integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Research, 2011, 39(D1):D152-D157.
WANG F, SUN Y, RUAN J SH, et al.. Using small RNA deep sequencing data to detect human viruses[J]. BioMed Research International, 2016, 2016:2596782.
CHEN C F, RIDZON D A, BROOMER A J, et al.. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Research, 2005, 33(20):e179.
TORRES A G, FABANI M M, VIGORITO E, et al.. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection[J]. RNA, 2011, 17(5):933-943.
YAN N H, LU Y L, SUN H Q, et al.. A microarray for microRNA profiling in mouse testis tissues[J]. Reproduction, 2007, 134(1):73-79.
GILAD S, MEIRI E, YOGEV Y, et al.. Serum microRNAs are promising novel biomarkers[J]. PLoS One, 2008, 3(9):e3148.
HANSON E K, LUBENOW H, BALLANTYNE J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs[J]. Analytical Biochemistry, 2009, 387(2):303-314.
ZHAO G J, HU T Y, Li J, et al.. A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification[J]. Biosensors and Bioelectronics, 2015, 71:103-107.
ZHAO B, SONG J R, GUAN Y F. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification[J]. Acta Biochimica et Biophysica Sinica, 2015, 47(2):130-136.
许金钩, 王尊本.荧光分析法[M]. 3版.北京:科学出版社, 2006:11-13.
XU J G, WANG Z B. Fluorescence Analysis Method[M]. 3rd ed.. Beijing:Science Press, 2006:11-13. (in Chinese)
韩昌元.光电成像系统的性能优化[J].光学 精密工程, 2015, 23(1):1-9.
HAN CH Y. Performance optimization of electro-optical imaging systems[J]. Opt. Precision Eng., 2015, 23(1):1-9. (in Chinese)
吴太虎, 毛佳文, 陈锋, 等.痕量微生物快速检测系统[J].光学 精密工程, 2015, 23(11):3061-3068.
WU T H, MAO J W, CHEN F, et al.. Rapid trace microbia detection system[J]. Opt. Precision Eng., 2015, 23(11):3061-3068. (in Chinese)
LUO W, ZENG X H, LI M, et al.. A quantum dot fluorescence sensor system design for Hg 2+ trace detection[J]. Spectroscopy and Spectral Analysis, 2015, 35(11):3236-3240.
梁斌明, 胡艾青, 蒋强, 等.光子晶体负折射效应在糖溶液浓度检测中的应用[J].光学 精密工程, 2014, 22(4):877-883.
LIANG B M, HU A Q, JIANG Q, et al.. Application of photonic crystal negative refraction effect to sugar solution concentration detection[J]. Opt. Precision Eng., 2014, 22(4):877-883. (in Chinese)
0
浏览量
524
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构