浏览全部资源
扫码关注微信
长春理工大学 理学院 吉林 长春 130022
[ "楚学影(1982-), 女, 吉林长春人, 博士, 副教授, 2006年、2011年于东北师范大学分别获得学士、博士学位, 主要从事纳米材料光学性质及生物应用方面的研究。E-mail:chuxy608@163.com" ]
徐铭泽(1988-), 女, 吉林长春人, 博士, 讲师, 2009年、2014年于吉林大学分别获得学士、博士学位, 主要从事半导体纳米材料的制备、物性及应用方面的研究。E-mail:llmingze@foxmail.com
收稿日期:2017-07-10,
录用日期:2017-9-10,
纸质出版日期:2018-03-25
移动端阅览
楚学影, 沙雪, 徐铭泽, 等. 过渡金属二硫化物拉曼散射在免疫检测中的应用[J]. 光学 精密工程, 2018,26(3):572-577.
Xue-ying CHU, Xue SHA, Ming-ze XU, et al. Application of Raman scattering properties of transition metal dichalcogenides in immunoassays[J]. Optics and precision engineering, 2018, 26(3): 572-577.
楚学影, 沙雪, 徐铭泽, 等. 过渡金属二硫化物拉曼散射在免疫检测中的应用[J]. 光学 精密工程, 2018,26(3):572-577. DOI: 10.3788/OPE.20182603.0572.
Xue-ying CHU, Xue SHA, Ming-ze XU, et al. Application of Raman scattering properties of transition metal dichalcogenides in immunoassays[J]. Optics and precision engineering, 2018, 26(3): 572-577. DOI: 10.3788/OPE.20182603.0572.
为了利用可见光激发下半导体拉曼散射信号实现生物检测,以窄带隙的MoS
2
材料构建了拉曼免疫标记探针,用于实现对人IgG分子的高特异性识别。首先,运用液相剥离法分别获得了MoS
2
和WS
2
微米材料,以加热陈化处理分析了温度对532 nm激发下样品拉曼散射信号强度的影响。之后借助3-巯基丙酸修饰向MoS
2
材料表面引入羧基,进而获得了可用于免疫检测的拉曼探针。最后,以"抗体-待测物-抗体"的三层结构分析了基于MoS
2
拉曼散射的免疫检测性能。实验发现适当温度下加热陈化处理可增强过渡金属二硫化物的拉曼散射强度(70℃下最优)。多组对照实验结果表明,免疫检测生物芯片的拉曼信号强度随人IgG浓度的升高而升高,最终趋于饱和,最低浓度的检测限达到1 fM,实现了可见光激发下利用半导体拉曼散射信号对目标分子的高灵敏度、高特异性免疫检测。
To realize biodetection based on Raman scattering of semiconductor under visible light excitation
the Raman probe was constructed by using MoS
2
material
a narrow bandgap semiconductor
to realize high specific recognition of the human IgG molecule. First
MoS
2
and WS
2
micromaterials were obtained by liquid-phase exfoliation method. The effect of temperature on the intensity of the Raman signal excitated by a 532 nm laser was analyzed through heating and aging treatment. Second
the carboxyl group was introduced to the surface of the MoS
2
material by 3-mercaptopropionic acid modification
and a Raman probe was obtained. Finally
the performance of the MoS
2
based immunoassay was evaluated by using a sandwich structure of "antibody-analyte-antibody". It was found that the heating and aging treatment at appropriate temperature enhanced the Raman scattering intensity of the transition metal disulfide (70℃ is the optimal). The results of control groups show that the Raman intensity of the immunodetection increased and saturated with the concentration of the human IgG. The detection limit is 1 fM. The current procedure realized immunoassays with high sensitivity and high specificity by using the Raman scattering of semiconductor under visible light excitation.
PIERUCCI D, HENCK H, NAYLOR C H, et al.. Large area molybdenum disulphide-epitaxial graphene vertical Van der Waals, heterostructures[J]. Scientific Reports, 2016, 6:26656.
XU Y Z, WANG L L, LIU X, et al.. Monolayer MoS 2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production[J]. Journal of Materials Chemistry A, 2016, 4(42):16524-16530.
LUO G, ZHANG Z Z, LI H O, et al.. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Frontiers of Physics, 2017, 12(4):128502.
ZHU C F, ZENG Z Y, LI H, et al.. Single-layer MoS 2 -based nanoprobes for homogeneous detection of biomolecules.[J]. Journal of the American Chemical Society, 2013, 135(16):5998-6001.
WANG X X, NAN F X, ZHAO J L, et al.. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS 2 nanosheets with high electrochemical activity[J]. Biosensors and Bioelectronics, 2015, 64:386-391.
XI Q, ZHOU D M, KAN Y Y, et al.. Highly sensitive and selective strategy for MicroRNA detection based on WS 2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification[J]. Analytical Chemistry, 2014, 86(3):1361-1365.
WANG L, WANG Y, WONG J I, et al.. Functionalized MoS 2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution[J]. Small, 2014, 10(6):1101-1105.
LEE J, DAK P, LEE Y, et al.. Two-dimensional layered MoS 2 biosensors enable highly sensitive detection of biomolecules[J]. Scientific Reports, 2014, 4:7352.
SU S, ZOU M, ZHAO H, et al.. Shape-controlled gold nanoparticles supported on MoS 2 nanosheets:synergistic effect of thionine and MoS 2 and their application for electrochemical label-free immunosensing[J]. Nanoscale, 2015, 7(45):19129-19135.
CARVALHO B R, WANG Y X, MIGNUZZI S, et al.. Intervalley scattering by acoustic phonons in two-dimensional MoS 2 revealed by double-resonance Raman spectroscopy[J]. Nature Communications, 2017, 8:14670.
周明辉, 廖春艳, 任兆玉, 等.表面增强拉曼光谱生物成像技术及其应用[J].中国光学, 2013, 6(5):633-642.
ZHOU M H, LIAO CH Y, REN ZH Y, et al.. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chinese Journal of Optics, 2013, 6(5):633-642. (in Chinese)
LIU Y C, ZHONG M Y, SHAN G Y, et al.. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering[J]. Journal of Physical Chemistry B, 2008, 112(20):6484-6489.
朱雅君, 张学斌, 冀翼, 等.纳米二硫化钨和二硫化钼的制备方法及应用[J].广州化工, 2012, 40(3):4-6.
ZHU Y J, ZHANG X B, JI Y, et al.. Preparation technology and applications of nanoscaled WS 2 and MoS 2 [J]. Guangzhou Chemical Industry and Technology, 2012, 40(3):4-6. (in Chinese)
FREY G L, TENNE R, MATTHEWS M J, et al.. Raman and resonance Raman investigation of MoS 2 nanoparticles[J]. Physical Review B, 1999, 60(4):2882-2892.
王海龙. 电荷转移复合物与分子反对称极化率的理论研究[D]. 合肥: 中国科学技术大学, 2008.
WANG H L. Theoretical Investigation of Charge Transfer Complex and Molecular Antisymmetric Polarizability[D]. Hefei: University of Science and Technology of China, 2008. (in Chinese)
黄丽. 中子辐照6H-SiC的缺陷回复及其拉曼光谱研究[D]. 天津: 天津大学, 2012.
HUANG L. The Defects Recovery and Raman Spectroscopy Study of Neutron Irradiated 6H-SiC[D]. Tianjin: Tianjin University, 2012. (in Chinese)
张晓松, 李岚, 王达健.热处理对ZnO:Zn荧光薄膜结晶性能的影响[J].发光学报, 2006, 27(2):206-210.
ZHANG X S, LI L, WANG D J. Crystal property of ZnO:Zn thin film improved by post-deposition heat treatment[J]. Chinese Journal of Luminescence, 2006, 27(2):206-210. (in Chinese)
0
浏览量
315
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构