浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "王慧利(1987-), 女, 河南濮阳人, 博士研究生, 2011年于吉林大学获得学士学位, 主要从数字图像处理、目标检测方面的研究。E-mail:wanghuili871018@163.com" ]
[ "蔺春波(1988-), 男, 山东莱芜人, 硕士, 2011年于吉林大学获得学士学位, 2013年于中国科学院长春光学精密机械与物理研究所获得硕士学位, 主要从事光电精密测量, 自动控制, 人工智能等方面的研究。E-mail:linchunbo19881028@126.com" ]
收稿日期:2017-04-21,
录用日期:2017-5-12,
纸质出版日期:2018-03-25
移动端阅览
王慧利, 蔺春波, 陈典兵, 等. 光学遥感图像中复杂海背景下的舰船检测[J]. 光学 精密工程, 2018,26(3):723-732.
Hui-li WANG, Chun-bo LIN, Dian-bing CHEN, et al. Ship detection of complex sea background in optical remote sensing images[J]. Optics and precision engineering, 2018, 26(3): 723-732.
王慧利, 蔺春波, 陈典兵, 等. 光学遥感图像中复杂海背景下的舰船检测[J]. 光学 精密工程, 2018,26(3):723-732. DOI: 10.3788/OPE.20182603.0723.
Hui-li WANG, Chun-bo LIN, Dian-bing CHEN, et al. Ship detection of complex sea background in optical remote sensing images[J]. Optics and precision engineering, 2018, 26(3): 723-732. DOI: 10.3788/OPE.20182603.0723.
本文针对光学遥感图像中复杂海背景下的舰船检测问题,提出一种快速精确的舰船检测方法。首先,基于最大对称环绕显著性检测完成初始目标候选区域提取,并结合一种基于元胞自动机的同步更新机制,利用图像局部相似性和舰船目标几何特征,对初始目标候选区域进行更新,并通过OTSU算法获取最终目标候选区域;然后,根据舰船目标的固有特性对方向梯度直方图特征进行改进,提出一种新的表征舰船特性的边缘-方向梯度直方图特征对舰船目标进行描述,与传统HOG特征相比,这种特征向量侧重于对边缘特征的描述,对梯度向量鲁棒性更强,并且仅为一个24维的特征向量,计算复杂度低;最后,通过构建的训练库完成AdaBoost分类器的训练,并利用训练完成后的AdaBoost分类器完成目标的最终判别确认。本文的检测算法,针对尺寸为1 024 pixel×1 024 pixel的遥感图像,检测时间为2.386 0 s,召回率为97.4%,检测精度为97.2%。实验表明,本文提出算法的检测性能优于目前主流的舰船检测算法,在检测时间和检测精度上都能够满足实际工程需要。
In this paper
a fast and accurate ship target detection method wa proposed for ship detection in optical remote sensing image. The "coarse-to-fine" strategy was applied
which contains mainly three stages:the candidate regions extraction
building the candidate regions' descriptor and the candidate regions discrimination by reducing the false alarms to confirm the real ship targets. In the first stage
first the initial saliency map was extracted by the maximum symmetric surround method
which was based on the visual attention mechanism
and updated according to the local similarity via a updating mechanism of cellular automata; then
the final saliency map was segmented by OTSU algorithm to obtain binary image; finally salient regions were extracted from the segmented binary image
and filtered roughly by the ship objectives' geometric features. In the second stage
a new descriptor
named edge-histogram of oriented gradient (E-HOG)
was proposed to describe the ship target. The E-HOG feature was an improvement of the traditional HOG feature
based on the inherent characteristics of the ship targets. Compared to the traditional HOG feature
the E-HOG feature limited the statistical scale into the edge of the salient regions
for the purpose of reducing the influence of the variability of oriented gradient
and reducing computation complexity. On one hand
the descriptor could discriminate the ship objectives from others like cloud
islands and wave; on the other hand
the descriptor was insensitive to the size of the ship objectives
which reinforce the robustness of the approach. In the third stage
the AdaBoost classifier was used to confirm the real ship targets by eliminating the false alarms. We intercept 517 positive samples and 624 negative samples from the remote sensing images to train the AdaBoost classifier. The size of these training samples ranges from 20 pixel×10 pixel to 200 pixel×120 pixel
where the positive samples include different types of ship targets
and the negative samples include non-ship targets such as clouds
islands
coastlines
waves and sea floating objects. In this paper
the detection time is 2.386 0 s for the 1 024 pixel×1 024 pixel remote sensing image
the recall rate is 97.4%
and the detection precision is 97.2%. Experiments demonstrated that the detection performance of the proposed method outperforms that of the state-of-the-art methods
and it can meet the actual engineering requirements in the detection time and detection precision.
王彦情, 马雷, 田原.光学遥感图像舰船目标检测与识别综述[J].自动化学报, 2011, 37(9):1029-1039.
WANG Y Q, MA L, TIAN Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9):1029-1039. (in Chinese)
ELDHUSET K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):1010-1019.
WANG Y H, LIU H W. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):4173-4184.
赵英海, 吴秀清, 闻凌云, 等.可见光遥感图像中舰船目标检测方法[J].光电工程, 2008, 35(8):102-106, 123.
ZHAO Y H, WU X Q, WEN L Y, et al .. Ship target detection scheme for optical remote sensing images[J]. Opto-Electronic Engineering, 2008, 35(8):102-106, 123. (in Chinese)
ZHU CH R, ZHOU H, WANG R SH, et al .. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9):3446-3456.
YANG G, LI B, JI SH F, et al .. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):641-645.
LI Z M, YANG D Q, CHEN ZH ZH. Multi-layer sparse coding based ship detection for remote sensing images[C]. Proceedings of 2015 IEEE International Conference on Information Reuse and Integration, IEEE, 2015: 122-125.
SONG ZH N, SUI H G, WANG Y J. Automatic ship detection for optical satellite images based on visual attention model and LBP[C]. Proceedings of 2014 IEEE Workshop on Electronics, Computer and Applications, IEEE, 2014: 722-725.
YANG F, XU Q ZH, GAO F, et al . . Ship detection from optical satellite images based on visual search mechanism[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2015: 3679-3682.
QI SH X, MA J, LIN J, et al .. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7):1451-1455.
李湘眷, 王彩玲, 李宇, 等.窗口融合特征对比度的光学遥感目标检测[J].光学 精密工程, 2016, 24(8):2067-2077.
LI X J, WANG C L, LI Y, et al .. Optical remote sensing object detection based on fused feature contrast of subwindows[J]. Opt. Precision Eng., 2016, 24(8):2067-2077. (in Chinese)
徐伟, 陈彦彤, 朴永杰, 等.基于吉林一号遥感图像的星载目标快速识别系统[J].光学 精密工程, 2017, 25(1):255-262.
XU W, CHEN Y T, PIAO Y J, et al .. Target fast matching recognition of on-board system based on Jilin-1 satellite image[J]. Opt. Precision Eng., 2017, 25(1):255-262. (in Chinese)
ACHANTA R, SüSSTRUNK S. Saliency detection using maximum symmetric surround[C]. Proceedings of the 17th IEEE International Conference on Image Processing, IEEE, 2010: 2653-2656.
杜杰, 吴谨, 朱磊.基于区域特征融合的RGBD显著目标检测[J].液晶与显示, 2016, 31(1):117-123.
DU J, WU J, ZHU L. RGBD salient object detection based on regional feature integration[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1):117-123. (in Chinese)
郭少军, 娄树理, 刘峰.应用图像融合与多样性的舰船显著性检测[J].液晶与显示, 2016, 31(10):1006-1015.
GUO S J, LOU SH L, LIU F. Ship-target saliency detection via image fusion and graph-based manifold ranking[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(10):1006-1015. (in Chinese)
QIN Y, LU H CH, XU Y Q, et al . . Saliency detection via Cellular Automata[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015: 110-119.
ACHANTA R, SHAJI A, SMITH K, et al . . Slic superpixels[R]. Technical Report 149300, 2010.
王慧利, 朱明.聚类与几何特征相结合的遥感图像多类人造目标检测算法[J].光电子·激光, 2015, 26(5):992-999.
WANG H L, ZHU M. A fusion algorithm of clustering and geometric features for multiclass man-made objects detection in remote sensing images[J]. Journal of Optoelectronics·Laser, 2015, 26(5):992-999. (in Chinese)
SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37(3):297-336.
SOCHMAN J, MALAS J. AdaBoost with totally corrective updates for fast face detection[C]. Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2004: 445-450.
徐超, 高敏, 杨锁昌, 等.视觉注意机制下的粒子窗快速目标检测[J].光学 精密工程, 2015, 23(11):3227-3237.
XU CH, GAO M, YANG S CH, et al .. Visual attention mechanism-aided fast target detection by particle window[J]. Opt. Precision Eng., 2015, 23(11):3227-3237. (in Chinese)
0
浏览量
698
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构